Université de Lorraine - UFR MIM Préparation à l'agrégation interne de mathématique Module Algèbre linéaire Année 2012/2013

Feuille 1

Algèbre linéaire

1- Produit matriciel

- 1) Donner la définition d'un espace vectoriel, d'un anneau, d'une algèbre.
- 2) Soit $A \in \mathbb{M}_{m,n}(\mathbb{R})$, $B \in \mathbb{M}_{p,q}(\mathbb{R})$. A quelle condition sur m, n, p, q peut-on définir le produit AB?
- 3) Montrer que le produit matriciel n'est pas commutatif dans $M_2(\mathbb{R})$.
- 4) Une matrice $A \in \mathbb{M}_{m,n}(\mathbb{R})$ peut être considérée de deux façons:
 - La concaténation de ses colonnes

$$A = \operatorname{col}(r_1, r_2, \cdots, r_m) \tag{1}$$

• La concaténation de ses lignes

$$A = \lim_{n \to \infty} \begin{pmatrix} l_1^T \\ \vdots \\ l_n^T \end{pmatrix} \tag{2}$$

NB: $r_i \in \mathbb{R}^m$, $l_i \in \mathbb{R}^n$ désignent des vecteurs colonne.

Vérifier les affirmations suivantes:

- 1. Si r_i est la j-ème colonne de la matrice B, alors la j-ème colonne du produit AB est Ar_i .
- 2. Si l_i^T est la i-ème ligne de la matrice A, alors la i-ème ligne du produit AB est l_i^TB .
- 3. Pour $x \in \mathbb{R}^n$, Ax est la combinaison linéaire des colonnes de A avec pour coefficients les composantes de x.
- 4. Pour $y \in \mathbb{R}^m$, $y^T A$ est la combinaison linéaire des lignes de A avec pour coefficients les composantes de y.

2- Transposition

- 1) Soit $A \in \mathbb{M}_{m,n}(\mathbb{R})$. Rappeler la définition de la matrice transposée A^T . De même rappeler la définition de A^* pour $A \in \mathbb{M}_{m,n}(\mathbb{C})$.
- 2) Vérifier que $(AB)^T = B^T A^T$.
- 3) Soit $x, y \in \mathbb{R}^n$. Quelles est la dimension des matrices $x^T y$ et xy^T ?. Donner leur coefficients.
- 4) Soit $x_1, x_2 \cdots, x_m \in \mathbb{R}^n$, et $\lambda_1, \lambda_2, \cdots, \lambda_m \in \mathbb{R}$. Montrer que la matrice

$$A = \sum_{i=1}^{m} \lambda_i x_i x_i^T \tag{3}$$

est symétrique.

5) Soit $A \in \mathbb{M}_n(\mathbb{R})$. Montrer qu'il existe B symétrique et C antisymétrique tel que A = B + C.

3- Rang d'une matrice

Soit $A \in \mathbb{M}_{m,n}(\mathbb{R})$. On appelle $\mathcal{C}(A)$, le sous-espace de \mathbb{R}^m engendré par les colonnes de A. De même, on appelle $\mathcal{L}(A)$ le sous-espace de \mathbb{R}^p engendré par les lignes de A Le rang de A, noté $\operatorname{rg}(A)$ est.

$$rg(A) = \dim(\mathcal{C}(A)) \tag{4}$$

1) Soit $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $B \in \mathbb{M}_{m,p}(\mathbb{R})$. Montrer que $\mathcal{C}(B) \subset \mathcal{C}(A)$ si et seulement si il existe une matrice $F \in \mathbb{M}_{n,p}(\mathbb{R})$ tel que B = AF. De même, pour $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $C \in \mathbb{M}_{q,n}(\mathbb{R})$, montrer que $\mathcal{L}(C) \subset \mathcal{L}(A)$ si et seulement si il existe une matrice $L \in \mathbb{M}_{q,m}(\mathbb{R})$ tel que C = LA.

2) On veut montrer le résultat suivant,

$$rg(A) = rg(A^T) \tag{5}$$

Soit $c = \operatorname{rg}(A)$ et $l = \operatorname{rg}(A^T)$ (rang "en colonnes" et rang "en lignes"). Montrer qu'il existe une matrice $B \in \mathbb{M}_{n,c}(\mathbb{R})$ et une matrice $L \in \mathbb{M}_{c,p}(\mathbb{R})$ tel que A = BL. De même, montrer qu'il existe une matrice $K \in \mathbb{M}_{m,l}(\mathbb{R})$ et une matrice $T \in \mathbb{M}_{l,n}(\mathbb{R})$ tel que A = KT.

- 3) Montrer que $\mathcal{L}(A) \subset \mathcal{L}(L)$. De même, montrer que $\mathcal{C}(A) \subset \mathcal{C}(K)$.
- 4) En déduire que

$$l \le \dim(\mathcal{L}(L)) \le c$$
, et que $c \le \dim(\mathcal{C}(K)) \le l$ (6)

et en conclure le résultat.

5) Montrer les relations suivantes,

$$rg(A^T A) = rg(A) \tag{7}$$

$$rg(A+B) \le rg(A) + rg(B) \tag{8}$$

$$rg(AB) \le \min(rg(A), rg(B)) \tag{9}$$

4- Trace d'une matrice

La trace d'une matrice carrée $A \in \mathbb{M}_n(\mathbb{R})$ est

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii} \tag{10}$$

1) Montrer que pour $A \in \mathbb{M}_{m,n}(\mathbb{R}), B \in \mathbb{M}_{n,m}(\mathbb{R}),$ on a

$$tr(AB) = tr(BA) \tag{11}$$

2) Montrer que pour $A \in \mathbb{M}_{m,n}(\mathbb{R}), A \in \mathbb{M}_{n,p}(\mathbb{R}), C \in \mathbb{M}_{p,m}(\mathbb{R}),$

$$tr(ABC) = tr(BCA) = tr(CAB)$$
(12)

A-t-on également tr(ABC) = tr(BAC)?

Cependant, montrer que si A,B,C sont symétriques, alors

$$tr(ABC) = tr(BAC) \tag{13}$$

- 3) Quelle est la généralisation de (12) à un produit de k matrices?
- 4) Montrer que pour toute matrice $A \in M_{m,n}(\mathbb{R})$,

$$\operatorname{tr}(A^T A) = \sum_{i=1}^m \sum_{j=1}^n a_{i,j}^2$$
 (14)

En déduire que pour toute matrice $A \in \mathbb{M}_{m,n}(\mathbb{R})$, A = 0 si et seulement si $A^T A = 0$.

5) Soit $A \in M_{n,p}(\mathbb{R})$, tel que $A^T A = A^2$. Montrer que

$$\operatorname{tr}\left((A - A^{T})^{T}(A - A^{T})\right) = 0 \tag{15}$$

et en déduire que A est symétrique.

5- Déterminant d'une matrice

Soit A une matrice carrée $n \times n$ réelle.

- 1) Rappeler la définition du déterminant de A. Quelles sont les principales propriétés de l'application "déterminant"?
- 2) On suppose que det(A) = 0. Est-il possible que toutes les valeurs propres de A soient strictement positives?
- 3) On suppose que toutes les valeurs propres de A sont non nulles. Est-ce que A est inversible?
- 4) Soit $a, b \in \mathbb{R}^n$ et B la matrice $(n+1) \times (n+1)$ déduite de A par

$$B = \begin{pmatrix} 1 & b^T \\ a & A \end{pmatrix} \tag{16}$$

Montrer que

$$\det(B) = \det(A - ab^T) \tag{17}$$

et que si de plus A est inversible,

$$\det(B) = \det(A)(1 - b^T A^{-1}a) \tag{18}$$

5) On rappelle le résultat suivant. Soit $A_1,\,A_2$ les deux matrices partionnées

$$A_1 = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix}, \quad A_2 = \begin{pmatrix} C & B \\ 0 & A \end{pmatrix}$$
 (19)

On a (résulte de la définition du déterminant)

$$\det(A_1) = \det(A_2) = \det(A)\det(C) \tag{20}$$

Soit A une matrice carrée écrite sous forme partitionnée

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \tag{21}$$

On suppose que la matrice A_{11} est inversible. Montrer que

$$\det(A) = \det(A_{11}) \det(A_{22} - A_{21}A_{11}^{-1}A_{12}) \tag{22}$$