Agrégation interne 1995, épreuve 1

Notations.

- Pour n entier ≥ 1 , on note \mathbb{N}_n l'ensemble $\{1, 2, \dots, n\}$.
- $-\mathcal{M}_{n,p}\left(\mathbb{R}\right)$ (resp. $\mathcal{M}_{n,p}\left(\mathbb{C}\right)$) désigne l'espace vectoriel des matrices à n lignes et p colonnes à coefficients dans \mathbb{R} (resp. \mathbb{C}).
- Si n = p on écrit $\mathcal{M}_n(\mathbb{K})$ au lieu de $\mathcal{M}_{n,n}(\mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}).
- Si $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{C})$, ^tA désigne selon l'usage la matrice transposée de A, et |A| la matrice de coefficient générique $|a_{i,j}|$.
- Si $A \in \mathcal{M}_n(\mathbb{C})$, on note $P_A = \det(XI_n A)$ le polynôme caractéristique de A.

- Si
$$A \in \mathcal{M}_n(\mathbb{C})$$
, on note $P_A = \det(A I_n - A)$ le polynome caracteristique $A = A$ La matrice diagonale
$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$
 sera notée diag $(\lambda_1, \cdots, \lambda_n)$.

Convention. On identifie \mathbb{C}^p à $\mathcal{M}_{p,1}(\mathbb{C})$, et pour $A \in \mathcal{M}_{n,p}(\mathbb{C})$, et $x \in \mathbb{C}^p$, $(Ax)_i$ désigne le i-ème coefficient de la matrice unicolonne Ax.

Définitions.

(1) Soit $A = (a_{i,j})$ et $B = (b_{i,j})$ deux éléments de $\mathcal{M}_{n,p}(\mathbb{R})$. On écrit $A \leq B$ (resp. A < B) si et seulement si:

$$\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p, \quad a_{i,j} \leq b_{i,j} \text{ (resp. } \forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p, \quad a_{i,j} < b_{i,j}).$$

(2) A est dite positive lorsque $0 \le A$, i.e. :

$$\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p, \quad a_{i,j} \ge 0.$$

A est dite strictement positive lorsque 0 < A, i.e.:

$$\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p, \quad a_{i,j} > 0.$$

(3) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Si $P_A(X) = \prod_{i=1}^n (X - \lambda_i)$ (i.e. les valeurs propres, non nécessairement distinctes, de A sont $\lambda_1, \dots, \lambda_n$), le réel positif $\rho(A) = \max_{i \in \mathbb{N}_n} |\lambda_i|$ est appelé rayon spectral de A.

- I - Préliminaires

1. Soient $(A, A') \in \mathcal{M}_{n,p}(\mathbb{C}) \times \mathcal{M}_{n,p}(\mathbb{C})$, $B \in \mathcal{M}_{p,q}(\mathbb{C})$ et $x \in \mathbb{C}^p$. Vérifier les assertions suivantes:

- $i. |A + A'| \le |A| + |A'|, |AB| \le |A||B|.$
- ii. $|Ax| \le |A||x|$ et, de plus, si 0 < A, $0 \le x$ et $x \ne 0$, alors : Ax > 0.
- iii. Si $0 \le A$ et 0 < x, l'égalité Ax = 0 implique A = 0.
- 2. i. Soient z et z' des complexes tels que |z+z'|=|z|+|z'|, avec $z\neq 0$. Montrer que :

$$\exists \alpha \in \mathbb{R}_+, \quad z' = \alpha z.$$

ii. En déduire que si z_1, \dots, z_n sont n nombres complexes $(n \ge 2)$ tels que $|z_1 + \dots + z_n| = |z_1| + \dots + |z_n|$, alors :

$$\exists \theta \in \mathbb{R}, \quad \forall k \in \mathbb{N}_n, \quad z_k = e^{i\theta} |z_k|.$$

iii. On suppose que $A \in \mathcal{M}_n(\mathbb{R})$, avec 0 < A. Soit $x \in \mathbb{C}^n$. Montrer que :

$$|Ax| = A|x| \implies \exists \theta \in \mathbb{R}, \quad x = e^{i\theta}|x|.$$

- 3. Soit $F \in \mathcal{M}_n(\mathbb{C})$. On pose A = |F|. Montrer que s'il existe $x \in \mathbb{R}^n$, avec 0 < x, tel que Ax = Fx, alors on a A = F.
- 4. Une norme $\|\cdot\|$ sur $\mathcal{M}_n(\mathbb{C})$ est dite sous-multiplicative si :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C}), \quad ||AB|| \leq ||A|| \, ||B||.$$

On munit
$$\mathbb{C}^n$$
 de la norme $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \|x\| = \sup_{j \in \mathbb{N}_n} |x_j|$.

- i. Justifier brièvement que l'application $\|\cdot\|_{\infty} : \mathcal{M}_n(\mathbb{C}) \to \mathbb{R}$ définie par $\|A\|_{\infty} = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$, est une norme sur $\mathcal{M}_n(\mathbb{C})$.
- ii. On pose $A = (a_{i,j})$. Vérifier que :

$$||A||_{\infty} = \sup_{i \in \mathbb{N}_n} \left(\sum_{j=1}^n |a_{ij}| \right).$$

iii. Montrer que la norme $\|\cdot\|_{\infty}$ sur $\mathcal{M}_n(\mathbb{C})$ est sous-multiplicative.

- II - Étude du rayon spectral d'une matrice $A \in M_n(\mathbb{C})$

Dans toute la suite du problème, on munit $\mathcal{M}_n(\mathbb{C})$ d'une norme sous-multiplicative $\|\cdot\|$.

- 1. Soit $\lambda \in \mathbb{C}$ une valeur propre d'une matrice $A \in \mathcal{M}_n(\mathbb{C})$.
 - i. Montrer qu'il existe une matrice $X \in \mathcal{M}_n(\mathbb{C})$, non nulle, telle que $AX = \lambda X$.
 - ii. En déduire que $\rho(A) \leq ||A||$.
- 2. Soit S une matrice inversible de $\mathcal{M}_n(\mathbb{C})$ et $A \in \mathcal{M}_n(\mathbb{C})$.
 - i. Comparer $\rho(A)$ et $\rho(S^{-1}AS)$.

- ii. Montrer que, pour tout $k \in \mathbb{N}^*$, on a $\rho(A^k) = [\rho(A)]^k$, et en déduire que $\rho(A) \leq ||A^k||^{\frac{1}{k}}$.
- iii. Montrer que l'application $N: X \mapsto ||S^{-1}XS||$ est une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{C})$.
- 3. Soit $\varepsilon > 0$. On considère une matrice A de $\mathcal{M}_n(\mathbb{C})$ et $T = (t_{ij})$ une matrice triangulaire supérieure semblable à A.
 - i. Calculer la matrice $\Delta^{-1}T\Delta,$ avec $\Delta=\mathrm{diag}\,(1,d,\cdots,d^{n-1})$ où d>0.
 - ii. En déduire l'existence d'une norme sous-multiplicative N sur $\mathcal{M}_n\left(\mathbb{C}\right)$ telle que :

$$N(A) \le \rho(A) + \varepsilon$$
.

- 4. Soit $A \in \mathcal{M}_n(\mathbb{C})$.
 - (a) On suppose que $\rho(A) < 1$. Montrer que $\lim_{k \to +\infty} A^k = 0$.
 - ii. Trouver une matrice $A \in \mathcal{M}_2(\mathbb{C})$ telle que $\rho(A) = 1$ et que la suite $(A^k)_{k \in \mathbb{N}^*}$ ne soit pas bornée.
 - iii. Montrer que $\rho(A) = \lim_{k \to +\infty} ||A^k||^{\frac{1}{k}}$. Pour cela, $\varepsilon > 0$ étant fixé, on considérera la matrice $A_{\varepsilon} = \frac{1}{\rho(A) + \varepsilon} A$, et on utilisera II.4.i.
- 5. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C})$ tel que $|A| \leq B$.
 - i. Montrer que, pour tout $k \in \mathbb{N}^*$ on a : $|A^k| \le |A|^k \le B^k$.
 - ii. En déduire que $\rho(A) \leq \rho(|A|) \leq \rho(B)$.

- III - Propriétés des matrices carrées réelles positives

Soit $A \in \mathcal{M}_n(\mathbb{R})$ positive $(A \ge 0 \text{ ou } \forall (i, j), a_{i,j} \ge 0)$.

1. On suppose, dans cette question III.1 seulement, que la matrice A vérifie :

$$\exists s \in \mathbb{R}_+, \quad \forall i \in \mathbb{N}_n, \quad \sum_{j=1}^n a_{ij} = s.$$

Montrer que s est une valeur propre de A et que :

$$\rho\left(A\right) = s = \|A\|_{\infty}.$$

- 2. On pose $\alpha = \inf_{i \in \mathbb{N}_n} \left(\sum_{j=1}^n a_{ij} \right)$ et $\beta = \sup_{i \in \mathbb{N}_n} \left(\sum_{j=1}^n a_{ij} \right) = ||A||_{\infty}$.
 - i. Trouver une matrice $B=(b_{i,j})$ de $\mathcal{M}_n\left(\mathbb{R}\right)$ telle que $0\leq B\leq A$ et que :

$$\forall i \in \mathbb{N}_n, \quad \sum_{j=1}^n b_{ij} = \alpha.$$

ii. En déduire l'encadrement : $\alpha \le \rho(A) \le \beta$.

3. Soit
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 un élément de \mathbb{R}^n tel que $0 < x$. On pose $D_x = \operatorname{diag}(x_1, \dots, x_n)$. Calculer $D_x^{-1}AD_x$ et en déduire l'encadrement :

$$\inf_{i \in \mathbb{N}_n} \frac{(Ax)_i}{x_i} \le \rho(A) \le \sup_{i \in \mathbb{N}_n} \frac{(Ax)_i}{x_i}.$$

- 4. Soit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ un élément de \mathbb{R}^n tel que 0 < x, et r un réel positif ou nul.
 - i. Montrer que si Ax = rx alors $\rho(A) = r$.
 - ii. Comparer $\rho(^tA)$ et $\rho(A)$ et en déduire que si $^txA = r^tx$, alors $\rho(A) = r$.
- 5. Soit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ un élément de \mathbb{R}^n tel que 0 < x. On désigne par α et β deux réels positifs ou nuls.
 - i. Montrer les implications :

$$\alpha x \le Ax \text{ (resp. } < Ax) \implies \alpha \le \rho(A) \text{ (resp. } < \rho(A) \text{)}.$$

 $Ax \le \beta x \text{ (resp. } < \beta x) \implies \rho(A) \le \beta \text{ (resp. } < \beta).$

ii. En déduire les implications :

$$\alpha^{t}x \leq {}^{t}xA \text{ (resp. } < {}^{t}xA) \quad \Rightarrow \quad \alpha \leq \rho\left(A\right) \text{ (resp. } < \rho\left(A\right)\right).$$

$${}^{t}xA \leq \beta^{t}x \text{ (resp. } < \beta^{t}x) \quad \Rightarrow \quad \rho\left(A\right) \leq \beta \text{ (resp. } < \beta\right).$$

IV – Étude des matrices carrées réelles strictement positives

On suppose que $A = (a_{i,j})$ est une matrice strictement positive de $\mathcal{M}_n(\mathbb{R})$ (A > 0 ou $\forall (i,j)$, $a_{i,j} > 0$). On pose $r = \rho(A)$.

- 1. Vérifier que l'on a r > 0.
- 2. Soit $y=\begin{pmatrix}y_1\\ \vdots\\ y_n\end{pmatrix}$ un élément de \mathbb{R}^n tel que $0\leq y$ et $y\neq 0$. On suppose que $ry\leq Ay$.
 - i. On pose v = Ay et z = Ay ry. Vérifier que v > 0 et montrer que la relation rv < Av est impossible.
 - ii. En déduire que ry = Ay.
- 3. Soit x un vecteur propre (non nul) associé à une valeur propre λ de A vérifiant $|\lambda| = r$.
 - i. Montrer que A|x| = r|x| et en déduire que |x| > 0.
 - ii. Montrer qu'il existe $\theta \in \mathbb{R}$ tel que $x = e^{i\theta} |x|$.

4.

- i. Déduire de ce qui précède que r est effectivement valeur propre de A, et qu'il s'agit de l'unique valeur propre de A de module égal à r.
- ii. Montrer que le sous-espace propre $\ker(rI_n A)$ associé à r est une droite vectorielle engendrée par un vecteur v > 0. (Pour cela, on pourra raisonner par l'absurde en supposant dim $\ker(rI_n A) \ge 2$.)
- 5. On fixe v > 0, vecteur directeur de ker $(rI_n A)$. Montrer qu'il existe un unique vecteur $w \in \mathbb{R}^n$ tel que :

$$w > 0$$
; ${}^{t}wA = r^{t}w$; ${}^{t}wv = 1$.

- V - Étude des matrices carrées positives et irréductibles

A. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice positive $(A \geq 0)$. Dans les questions 1 et 2, on suppose, en outre, que A satisfait à la condition suivante : $r = \rho(A)$ est l'unique valeur propre de A de module égal à r, ker $(rI_n - A)$ est une droite vectorielle engendré par un vecteur v > 0. Pour chaque choix de v, il existe un unique vecteur $w \in \mathbb{R}^n$ tel que :

$$w > 0$$
; ${}^{t}wA = r^{t}w$; ${}^{t}wv = 1$.

- 1. On pose $L = v^t w$.
 - Montrer que L est indépendante du choix de v, et que c'est un élément de $\mathcal{M}_n(\mathbb{R})$ strictement positif et de rang 1.
- ((i) Décrire géométriquement l'endomorphisme $L: x \mapsto Lx$ de \mathbb{C}^n à l'aide de la droite vectorielle $\mathbb{C} \cdot v$ et de l'hyperplan $H = \{x \in \mathbb{C}^n : {}^twx = 0\}$.
- 2. (i) Montrer que H est stable par A et que si x est un vecteur non nul de H tel que $Ax = \mu x \ (\mu \in \mathbb{C})$ alors $|\mu| < r$.
 - (ii) En déduire que dans une base convenable \mathcal{U} de \mathbb{C}^n l'endomorphisme $x\mapsto Ax$ a une matrice A' de la forme :

$$A' = \begin{pmatrix} r & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}$$

avec $B \in \mathcal{M}_{n-1}(\mathbb{C})$, et $\rho(B) < r$.

Vérifier que r est racine simple du polynôme caractéristique $P_A(X)$ de A.

- (iii) Calculer $L' = \lim_{k \to +\infty} \left(\frac{A'}{r}\right)^k$ et décrire géométriquement l'endomorphisme dont la matrice dans la base \mathcal{U} de \mathbb{C}^n est L'.
- (iv) En déduire que $L = \lim_{k \to +\infty} \left(\frac{A}{r}\right)^k$ et qu'il existe $k_0 \in \mathbb{N}^*$ tel que, pour tout $k \ge k_0$, on ait $A^k > 0$.
- 3. Dans cette question $A \ge 0$ est une matrice carrée positive quelconque.

(i) Soit
$$\varepsilon > 0$$
. On pose $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$ et $A(\varepsilon) = A + \varepsilon J$.

Montrer que la fonction $f : \varepsilon \mapsto \rho(A(\varepsilon))$ est croissante sur $]0, +\infty[$ et a une limite $l \ge \rho(A)$ lorsque ε tend vers 0 par valeurs supérieures.

(ii) Montrer que $f(\varepsilon) = \rho(A(\varepsilon))$ est une valeur propre de $A(\varepsilon)$ et qu'il existe un unique vecteur propre, noté $x(\varepsilon)$, associé à cette valeur propre et appartenant à l'ensemble :

$$K = \left\{ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n : x \ge 0, \sum_{j=1}^n x_j = 1 \right\}.$$

- 1. (a) i. En déduire qu'il existe $x \in K$ tel que Ax = lx. Comparer l et $\rho(A)$.
- **B.** On suppose que $n \geq 2$ et que $A \in \mathcal{M}_n(\mathbb{R})$ est positive.

On appelle sous-espace de coordonnées associé à une partie I de \mathbb{N}_n le sous-espace vectoriel suivant de \mathbb{R}^n :

$$\mathbb{R}^{I} = \left\{ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n : \forall j \in \mathbb{N}_n \setminus I, \quad x_j = 0 \right\}.$$

La matrice A est dite irréductible si les seuls sous-espaces de coordonnées stables par A sont $\{0\} = \mathbb{R}^{\emptyset}$ et $\mathbb{R}^n = \mathbb{R}^{\mathbb{N}_n}$. Dans le cas contraire A est dite réductible.

Soit d'autre part $(i, j) \in \mathbb{N}_n \times \mathbb{N}_n$.

Pour $m \in \mathbb{N}^*$, on note $\mathcal{L}(i, j, m)$ la proposition :

$$\exists (i_0, \dots, i_m) \in (\mathbb{N}_n)^{m+1} : \begin{cases} i_0 = i, & i_m = j \\ \forall k \in \{0, \dots, m-1\}, & a_{i_k, i_{k+1}} \neq 0 \end{cases}$$

et $\mathcal{L}(i, j)$ la proposition :

$$\exists m \in \mathbb{N}^*, \quad \mathcal{L}(i, j, m) \text{ est vraie.}$$

1. (i) Vérifier que A est réductible si et seulement si il existe une partition non triviale (I, J) de \mathbb{N}_n $(I \neq \emptyset, J \neq \emptyset, I \cap J = \emptyset, I \cup J = \mathbb{N}_n)$ telle que :

$$\forall (i,j) \in I \times J, \quad a_{i,j} = 0.$$

Montrer que dans cette situation, pour tout couple $(i, j) \in I \times J$, $\mathcal{L}(i, j)$ n'est pas vraie.

- (ii) Soit $j \in \mathbb{N}_n$. On pose $\mathcal{I}_j = \{j\} \cup \{j' \in \mathbb{N}_n \mid \mathcal{L}(j',j) \text{ est vraie}\}$. Montrer que $\mathbb{R}^{\mathcal{I}_j}$ est stable par A.
- (iii) Déduire de ce qui précède l'équivalence :

A irréductible \Leftrightarrow Pour tout $(i,j) \in \mathbb{N}_n \times \mathbb{N}_n$, $\mathcal{L}(i,j)$ est vraie.

2. On suppose que $\mathcal{L}(i,j)$ est vraie, avec $i \neq j$. Montrer qu'il existe $m \in \mathbb{N}_{n-1}$ tel que $\mathcal{L}(i,j,m)$ soit vraie.

- 3. Pour tout $m \in \mathbb{N}^*$, on pose $A^m = \left(a_{i,j}^{(m)}\right)$.
 - (i) Établir une relation de récurrence entre $a_{i,j}^{(m)}$ et les $a_{k,l}^{(m-1)}$, et montrer que pour $i \neq j$ on a l'équivalence :

$$\mathcal{L}(i, j, m)$$
 est vraie $\Leftrightarrow a_{i,j}^{(m)} > 0$.

- (ii) En conclure que les trois assertions suivantes sont équivalentes :
 - a. la matrice A est irréductible;
 - **b.** pour tout $(i,j) \in \mathbb{N}_n \times \mathbb{N}_n$ tel que $i \neq j$, il existe $m \in \mathbb{N}_{n-1}$ tel que $a_{i,j}^{(m)} > 0$;
 - **c.** $(I+A)^{n-1} > 0$; critère d'irréductibilité.

On pose à nouveau $r = \rho(A)$.

- 4. (i) Déduire de V.A.3.iii. que $\rho(I_n + A) = 1 + r$ et que $\rho((I_n + A)^{n-1}) = (1 + r)^{n-1}$.
 - (ii) On suppose que A est irréductible. Montrer que $(1+r)^{n-1}$ est une racine simple de $P_{(I_n+A)^{n-1}}$.
 - (iii) On suppose encore que A est irréductible. Montrer que le sous-espace propre $\ker (rI_n A)$ associé à r est une droite vectorielle engendrée par un vecteur v > 0.
- 5. On dit que la matrice $A \geq 0$ est primitive s'il existe $k \in \mathbb{N}^*$ tel que $A^k > 0$.
 - (i) Montrer que si A est primitive, alors r est l'unique valeur propre de A de module égal à r et que, de plus, A est irréductible.
 - (ii) Réciproquement, montrer que si A est irréductible et si r est l'unique valeur propre de A de module égal à r, alors A est primitive.
 - (iii) Montrer que la matrice carrée :

$$A_0 = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \end{pmatrix}$$

est primitive $(A_0 \in \mathcal{M}_n(\mathbb{R}), n \geq 2)$.