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Abstract. A new quadrature rule for functions defined on the sphere is introduced. The nodes
are defined as the points of the Cubed Sphere. The associated weights are defined in analogy
to the trapezoidal rule on each panel of the Cubed Sphere. The formula enjoys a symmetry
property ensuring that a proportion of 7/8 of all Spherical Harmonics is integrated exactly.
Based on the remaining Spherical Harmonics, it is possible to define modified weights giving
an enhanced quadrature rule. Numerical results show that the new quadrature is competitive
with classical rules of the literature. This second quadrature rule is believed to be of interest for
applied mathematicians, physicists and engineers dealing with data located at the points of the
Cubed Sphere.
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1. Introduction

In this paper we consider quadrature rules for functions defined on the sphere. Let S2 be the
unit sphere, and let x ∈ S2 7→ f(x) be a regular function. A quadrature rule Q(f) is defined by

(1) I(f) =

∫
S2
f(x)dσ(x) '

P∑
p=1

wpf(xp) = Q(f),

where xp ∈ S2 are the nodes and wp are the weights. The quest for rules of the form (1) has been
a longstanding topic of interest. The classical setup of the problem consists in finding a minimal
number P of nodes xp with the associated weights wp for (1) to be as exact as possible. More
precisely, the problem is to determine the location on the sphere of a minimal number of nodes for
the largest number of Spherical Harmonics to be exactly integrated. A classical reference is [13].
Recent works on this topic include [16, 11, 1, 8]. For a general presentation of the problem we refer
to the review chapters [9, Chap. 40] and [2, Chap. 5].

Here we consider the problem with a slightly different point of view. Over the past 20 years,
the Cubed Sphere (see Fig.1) has become a popular spherical grid among researchers dealing with
mathematical or physical models. In particular, in numerical climatology, the Cubed Sphere serves
for various numerical schemes for time-dependent climate models on the sphere [12, 3, 17]. In this
context, accurately evaluating averaged quantities over the sphere such as mass, momentum, energy
or total vorticity is particularly important. This is in particular the case for the finite difference
scheme introduced in [5, 6]. This scheme uses discrete unknowns located at the points of the Cubed
Sphere. To use with this scheme, it is important to have a quadrature rule with nodes xp selected
as the points of the Cubed Sphere.

To fully determine such a rule, it remains to identify a set of suitable weights wp. A basic
observation is that a particularly simple set of weights wp, described hereafter, provides a rule (1),
which is exact for a proportion of 7/8 of all Spherical Harmonics. Furthermore, for the remaining
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1/8 Spherical Harmonics not integrated exactly, fourth order accuracy convergence of the rule was
numerically obtained. This observation was the starting point of the present study. Building upon
this first rule (called Qa), we suggest a second rule Qb, which keeps the 7/8 property and appears
to be remarkably accurate.

The outline of the paper is as follows. Section 2 gives the notation for the Spherical Harmonics
and the Cubed Sphere. In Section 3, our first quadrature rule, called Qa, is introduced and
the aforementioned 7/8 property is proved. This property is actually due to a set of combined
symmetries shared by the Cubed Sphere and the Spherical Harmonics. In Section 4, we show how
this property can serve to significantly enhance the selection of the weights associated with the
nodes of the Cubed Sphere. This permits to define a second quadrature rule, called Qb, which
again uses the Cubed Sphere points as quadrature nodes. The weights wp are selected according to
a specific least square problem. Numerical results show that the rule performs very well compared
to other spherical quadrature rules of the literature.

2. Notation

Consider the reference Cartesian frame R = (O, i, j,k) in R3. The unit sphere is S2 =
{x(x, y, z) ∈ R3|x2 + y2 + z2 = 1}. The Longitude-Latitude coordinate system is called (λ, θ),
with −π ≤ λ < π and −π/2 ≤ θ ≤ π/2. For n ≥ 0 and m with −n ≤ m ≤ n, the Spherical
Harmonic Y mn : x ∈ S2 7→ Y mn (x) ∈ C is defined by [10, 2]:

(2) Y mn (x) = (−1)mN |m|n P |m|n (sin θ)eimλ.

For 0 ≤ m ≤ n, the function x ∈ [−1, 1] 7→ Pmn (x) is the associated Legendre polynomial. It is
defined in terms of the Legendre polynomial Pn(x) = dn

dxn

(
(x2 − 1)n

)
/(2nn!) by the relation:

(3) Pmn (x) = (1− x2)m/2
dm

dxm
Pn(x), 0 ≤ m ≤ n, x ∈ [−1, 1].

The Spherical Harmonics form an orthonormal basis of the space L2(S2) and therefore the integrals
I(Y mn ) are:

(4) I(Y mn ) = 0 if (n,m) 6= (0, 0), I(Y 0
0 ) =

√
4π.1

The normalisation constant Nm
n in (2) is

(5) Nm
n =

(
2n+ 1

4π

(n−m)!

(n+m)!

) 1
2

.

A quadrature rule is usually designed using the functions Y mn . The accuracy is measured by the
order n such that the functions Y mn (x), |m| ≤ n, are integrated exactly.

Our next ingredient is a particular grid of S2 called the Cubed Sphere (see Fig. 1). The
Cubed Sphere with parameter N consists of 6N2 + 2 points located on six panels, called Pk,
(I) ≤ k ≤ (V I). These six panels match the six faces of the cube [−1, 1]3 embedding the sphere.
This is the reason of the terminology Cubed Sphere. The topology of the six panels of the unfolded
Cubed Sphere is shown on Fig. 2.

Each panel Pk has a square shape represented on Fig. 3. It is supplied with a coordinate system
(ξ, η), whose coordinate lines are great circle sections. The coordinate lines ξ = 0, (resp. η = 0)
represent the vertical (resp. horizontal) equatorial line at the center of Pk. The function ϕk is the
bijective application defined by

(6) ϕk : (ξ, η) ∈
[
−π

4
,
π

4

]2
7→ x(ξ, η) ∈ Pk.

1The function Y 0
0 is the constant 1√

4π
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Figure 1. The Cubed Sphere with grid parameter N = 16. The total number of
gridpoints is 6×N2 + 2 = 1538 in this case. The panels (I), (II), (III) and (IV )
are located around the equatorial plane z = 0. The index of the north panel is
(V ) and the one of the south panel is (V I).

Consider for example the case of the function x(x, y, z) = ϕ(I)(ξ, η) which defines panel (I). With
the variables X = tan(ξ) and Y = tan(η), the components x, y and z of ϕ1 are defined by

(7) x =
1√

1 +X2 + Y 2
, y =

X√
1 +X2 + Y 2

, z =
Y√

1 +X2 + Y 2
.

Similar relations hold for the five other panels [14]. On each panel Pk, the metric tensor G [15] is
expressed in terms of X and Y by

(8) G(ξ, η) =
(1 +X2)(1 + Y 2)

(1 +X2 + Y 2)2

[
1 +X2 −XY
−XY 1 + Y 2

]
.

The determinant is

(9) detG(ξ, η) =
(1 +X2)2(1 + Y 2)2

(1 +X2 + Y 2)3
.

The restriction of the Cubed Sphere to Pk consists of the (N + 1)2 points ski,j defined for k =

(I), . . . , (V I) and −N/2 ≤ i, j ≤ N/2,2

2We assume for simplicity that N is an even integer.
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Figure 2. The topology and spherical periodicity of the six panels is displayed
on the unfolded Cubed Sphere. The Latin numbers (I), (II), (III), (IV ), (V )
and (V I) designate the number of the panels from k = (I) to k = (V I). Each of
the 12 edges of the Cubed Sphere is represented by a couple of segments on the
picture, indicated by one of the four symbols (- -, -., ... or —), and one of the two
colors (black or grey). The arrows indicate how the edges are defined from each
pair of segments with the same symbols.

by

(10)


ski,j = ϕk(ξi, ηj),

∆ξ = ∆η = π/2N,

ξi = i∆ξ, ηj = j∆η.

The points of the Cubed Sphere consist of the points (ski,j) with−N2 ≤ i, j ≤
N
2 and (I) ≤ k ≤ (V I).

As shown on Fig. 3, the points on each panel are classified as internal points, edge points and
corner points. Therefore by summing up over panels (I) to (V I) the (N + 1)2 points, one counts
two times the 12(N−1) edge points and three times the 8 corner points. This leads to a number of
6N2+2 = 6×(N+1)2−12×(N−1)−2×8 points. Suppose now given an enumeration (xp)1≤p≤6N2+2

of these points on the Cubed Sphere. To this enumeration, corresponds the application

(11) (i, j, k) ∈
[
− N

2
,
N

2

]
×
[
− N

2
,
N

2

]
× [(I), . . . , (V I)] 7→ p(i, j, k)

such that

(12) xp(i,j,k) = ski,j .

These points will serve as quadrature nodes of the two rules Qa and Qb introduced hereafter.
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Figure 3. A typical panel of the Cubed Sphere: the (N+1)2 points are classified
in three categories: (i) Circles correspond to the (N − 1)2 internal points; (ii)
Squares correspond to 4(N − 1) edge points ; (iii) Pentagons correspond to the 4
corner points.

3. A first quadrature rule

3.1. Derivation of the rule Qa. In this section our first quadrature rule, called Qa, is introduced.
The quadrature nodes xp in (1) are the 6N2 + 2 points ski,j defined in (10). Let f : S2 7→ R be a
regular function defined on S2. Using the decomposition

(13) S2 =

(V I)⊔
k=(I)

Pk

allows to express I(f) as

(14)

I(f) =

∫
S2
f(x)dσ(x)

=

(V I)∑
k=(I)

∫
Pk
f(x)dσ(x)︸ ︷︷ ︸
Ik(f)

.

Defining on panel Pk the change of variables x = ϕk(ξ, η) gives by the chain rule,

(15) Ik(f) =

∫
(ξ,η)∈[−π4 ;π4 ]

2
(f ◦ ϕk)(ξ, η)

√
|detG(ξ, η)|dξdη.

We denote

(16) fk = f ◦ ϕk.
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Our basic quadrature rule for the integral Ik(f) is called Qk(f). It is defined by

(17) Qk(f) = ∆ξ∆η

N/2∑
i,j=−N/2

ci,jgi,jfk(ξi, ηj).

In (17) the geometric weights gi,j are given by (see (9):

(18) gi,j =
√
|detG(ξi, ηj)| =

(1 + tan2 ξi)(1 + tan2 ηj)(
1 + tan2 ξi + tan2 ηj

)3/2 , −N2 ≤ i, j ≤ N

2
.

Furthermore, the coefficients ci,j are defined as follows:

• The internal points (i, j) with −N/2 < i, j < N/2, displayed with circles on Fig 3 are
counted with coefficient ci,j = 1.

• The edge points (i, j) with (i, j) ∈ {[±N/2,−N/2 + 1 : N/2 − 1]}
⊔
{[−N/2 + 1 : N/2 −

1,±N/2]} are displayed with squares on Fig. 3 and are multiplied by the coefficient ci,j =
1/2.

• The four corner values (i, j) ∈ {(−N/2,−N/2), (−N/2, N/2), (N/2,−N/2), (N/2, N/2)}
displayed as pentagons on Fig. 3 are multiplied by the coefficient ci,j = 1/3.

This convention is natural since each edge point belongs to two neighbor panels. It is therefore
counted twice hence the coefficient 1/2. Similarly, each corner point is counted three times, and
this gives a coefficient 1/3 at the panel level.

Definition 3.1. The quadrature rule Qa is defined as the sum of the contribution Qk(f) of each
panel Pk:

(19) Qa(f) =

(V I)∑
k=(I)

Qk(f).

or alternatively

(20) Qa(f) =

(V I)∑
k=(I)

N/2∑
i,j=−N/2

ci,jg
k
i,jf(ski,j).

Remark 3.2. In one dimension, the trapezoidal rule, expressed for f(x) defined on I = [0, 1], is
given by:

(21)
∫ 1

0

f(x)dx ' 1

N

(
1

2
f(0) +

N−1∑
1

f(i∆x) +
1

2
f(1)

)
.

On the panel Pk, the formula (15) can be interpretated as the tensor product of the rule (21) on
[−π/4, π/4] × [−π/4, π/4] applied to the integrand in (15) except that the coefficient 1/3 is used
at the corner points, instead of 1/4.

Remark 3.3. Integrating the constant function f0(x) ≡ 1 on a panel Pk, gives 1/6 of the area of
S2, i.e. 2π

3 . This can be expressed using (15) as

(22)
∫
(ξ,η)∈[−π4 ;π4 ]2

(1 + tan2 ξ)(1 + tan2 η)

(1 + tan2 ξ + tan2 η)3/2
dξdη =

2π

3
,
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an identity which can be verified directly. The approximation (17) of the integral (22) is indepen-
dent of the panel k with value:

Q(I)(f0) =
∑

−N/2<i,j<N/2

(1 + tan2 ξi)(1 + tan2 ηj)

(1 + tan ξ2i + tan η2j )3/2
(internal points)(23)

+ 2(1 + tan2 ηN/2)
∑

−N/2<i<N/2

1 + tan2 ξi
(1 + tan2 ξi + tan2 ηN/2)3/2

(edge points)

+
4

3

(1 + tan2 ξN/2)(1 + tan2 ηN/2)

(1 + tan2 ξN/2 + tan2 ηN/2)3/2
(corner points)

and the value of Qa(f0) in (19) is

(24) Qa(f0) = 6Q(I)(f0).

As will be seen in Table 3, Qa(f0) ' 2π
3 , with fourth order accuracy with respect to 1/N .

Note that contrary to most of the quadrature rule on the sphere, this approximation is not exact
(see Prop. 3.1). This is because f0(x) is proportional to the Spherical Harmonic Y 0

0 (x) which is
not integrated exactly. The quadrature rule Qb introduced in Section 4 will remedy this fact.

3.2. Symmetry property. Spherical Harmonics are commonly used to design quadrature rules
(1). In the case where nodes and/or weights have spherical symmetries, one expects some particular
subset of the Spherical Harmonics to be integrated exactly. Building quadrature rules on the
sphere using invariance of the nodes under a subgroup of SO3 has been used by several authors.
An important result in this direction is Sobolev’s theorem, which asserts that a necessary and
sufficient condition for a quadrature rule, invariant by a subgroup G of SO3, to be exact up to
degree n is to be exact for all G− invariant Spherical Harmonics of degree ≤ n, [9]. Our rules
are not a direct consequence of this result and we are considering a different approach. In a first
step, we determine which Spherical Harmonics are invariant under the rule Qa. Observe that
the weights gi,j in (18) do not depend on the panel Pk. Furthermore they satisfy the following
invariance properties for −N/2 ≤ i, j ≤ N/2:

• Invariance by rotation of angle π/2:

(25) gi,j = g−j,i,

• Invariance by symmetry with respect to the first diagonal:

(26) gi,j = gj,i.

Combining these two transformations, it is easily seen that the coefficients gi,j are symmetric with
respect to the second diagonal and with respect to the coordinate lines i = 0 and j = 0, respectively.
Otherwise stated, the following relations hold:

(27) gi,j = g−j,−i = g−i,j = gi,−j = g−i,−j , −N/2 ≤ i, j ≤ N/2.

For example for N = 8, the coefficients gi,j can be arranged as shown in Table 1, where the
symmetry properties (25), (26) and (27) are represented with letters. For a Cubed Sphere with
parameter N , the number of independent weights is qN = (N + 2)(N + 4)/8. These weights
correspond to the indices 0 ≤ j ≤ i ≤ N/2. They are represented with boldface letters in Table 1.
The number of values taken by the weights thus represents asymptotically only 1/48 of the number
of nodes. Table 2 displays typical values of the integer qN and of the number of quadrature nodes
for a series of values of N .
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(28)

a b d g k g d b a
b c e h l h e c b
d e f i m i f e d
g h i j n j i h g
k l m n o n m l k
g h i j n j i h g
d e f i m i f e d
b c e h l h e c b
a b d g k g d b a

Table 1. Parameters of the weights gi,j in a typical panel Pk in the Cubed
Sphere with parameter N = 8. The independent parameters are displayed in
boldface. The coefficients are symmetric with respect to the grey shadowed lines.
The number of independent parameters is qN = (N + 2)(N + 4)/8. There are 15
independent parameters in this particular case.

Cubed Sphere parameter N 4 8 16 32 64
Number of quad. nodes in a panel (= (N + 1)2) 25 81 289 1089 4225

Number of quad. nodes on S2(= 6N2 + 2) 98 386 1538 6146 24578
Number of independent weights qN = (N + 2)(N + 4)/8 6 15 45 153 561

Table 2. Number of quadrature nodes in function of the parameter N of the
Cubed Sphere.

In summary, the quadrature rule Qa can be expressed as

(29) Qa(f) =

P∑
p=1

wpf(xp),

where
• the nodes xp are the P = 6N2 + 2 points of the Cubed Sphere of parameter N .
• the weights wp are given by

(30) wp = gi,j

where the couple (i, j) is such that xp = ski,j for some panel k = (I), . . . , (V I). Otherwise
stated, (i, j, k) is some triple of indices satisfaying

(31) (i, j, k) ∈ p−1(p)

where p is the enumerating application defined in (12).

3.3. The 7/8 property. Under the assumptions (25-26) on the weights, the following claim holds:

Proposition 3.1. The quadrature rule Qa in (29) is exact, independently of the parameter N , for
all Spherical Harmonics Y mn (x) satisfying

• either n odd,
• either n even and m 6≡ 0 (mod 4).

These two series represent a proportion of 7/8 of all Spherical Harmonics.
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Remark 3.4. One may wonder if the Spherical Harmonics of this latter category (the remaining
1/8 Spherical Harmonics) are effectively inexactly integrated by the rule Qa for all integers n
even and m ≡ 0 (mod 4). This question is unanswered for the moment. In fact, the function Y 0

2

((n,m) = (2, 0)) is exactly integrated by the rule Qa. Prop. 3.1 therefore only describes a sufficient
condition for the exactness of the rule Qa.

Proof. The Spherical Harmonic Y mn is (see (2)):

(32) Y mn (x) = (−1)mN |m|n P |m|n (sin θ)eimλ, n ≥ 0, −n ≤ m ≤ n

The exact integration property stated in Prop. 3.1 is based on the fact that non zero values of
Y mn (x) have their exact opposite on another part of the Cubed Sphere. This property is due to
the symmetries (25, 26) of the weights gi,j , and to the following relations:

(33) Y mn (λ+ π, θ) = (−1)m × Y mn (λ, θ),

(34) Y mn (λ,−θ) = (−1)n+m × Y mn (λ, θ),

(35) Y mn

(
λ+ p

π

m
, θ
)

= (−1)p × Y mn (λ, θ)

with n > 0, m ∈ {−n, . . . , n} \ {0}, p ∈ Z, and (λ, θ) ∈ [−π, π) ×
[
−π2 ; π2

]
. Note that (33) is a

particular case of (35).
We consider the four following cases. In each case, the approximate value Qa(Y mn ) is compared

to the exact integral I(Y mn ) in (4).

• Case n odd. Consider first the case where m is even, then the property (34) leads to

(36) Q(I)(Y
m
n ) = Q(II)(Y

m
n ) = Q(III)(Y

m
n ) = Q(IV )(Y

m
n ) = 0,

due to opposite values of Y mn (λ, θ) for opposite values of θ, and to the properties gi,j = gi,−j of
the weights. Moreover, using that the weights gi,j are the same on the six panels, we have

(37) Q(V )(Y
m
n ) = −Q(V I)(Y

m
n ).

This gives Qa(Y mn ) = 0.
Consider now the case where m is odd. Then the relation (33) leads to the relations

(38) Q(I)(Y
m
n ) = −Q(III)(Y

m
n ), Q(II)(Y

m
n ) = −Q(IV )(Y

m
n ).

We have used the relation gi,j = g−i,j and the fact that the weights gi,j are identical on each panel.
Furthermore due to (33) and gi,j = g−i,−j (symmetry of the weights with respect to the center of
each panel) we find

(39) Q(V )(Y
m
n ) = Q(V I)(Y

m
n ) = 0.

Summing up over the six panels yields Qa(Y mn ) = 0 (exact value).
• Case n even and m odd. In this case, n+m is odd, and then (34) shows that Qk(Y mn ) = 0
for the panels k = (I), (II), (III) and (IV ). This is due to the fact that the weights gi,j have the
property gi,j = gi,−j . For the panels k = (V ) and k = (V I), we have Qk(Y mn ) = 0 due to (33) and
gi,j = g−i,−j . Therefore Qa(Y mn ) = 0.
• Case n even, m even and m 6≡ 0 (mod 4). In this case, Qk(Y mn ) = 0 for the panels k = (V )
and k = (V I). This is due to (35) (take p = m

2 in this formula) and to the fact that the weights
gi,j satisfy (25). Moreover, again using (35) with p = m

2 , one has Q(I)(Y
m
n ) = −Q(II)(Y

m
n )

and Q(III)(Y
m
n ) = −Q(IV )(Y

m
n ). Note in addition that Q(I)(Y

m
n ) = Q(III)(Y

m
n ). This yields

Qa(Y mn ) = 0.
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• Case n even, m even and m ≡ 0 (mod 4). Note that the constant function Y 0
0 ≡ 1/

√
4π

belongs to this category. In this case,

(40) Q(I)(Y
m
n ) = Q(II)(Y

m
n ) = Q(III)(Y

m
n ) = Q(IV )(Y

m
n ).

This is due to the property (35). In addition, due to (34),

(41) Q(V )(Y
m
n ) = Q(V I)(Y

m
n ),

In this case, a possible cancellation between the terms of the approximate integral Qa(Y mn ) could
only occur between the contribution of panels (I), (II), (III) and (IV) on the one hand and the
contribution of panels (V) and (VI) on the other hand. Such a cancellation does not occur in
general. This explains why Qa(Y mn ) is not exact in general in this case.

Clearly, the three first cases describe all together a proportion of (asymptotically) 7/8 of all
Spherical Harmonics. The latter case corresponds to the remaining 1/8 Spherical Harmonics. �

3.4. Numerical results. In this section we show numerical results obtained with the rule Qa.
The functions f0, f1, f2, f3 and f4 that are used to test numerical quadrature formula are [8, 4]:

(42)



f0(x, y, z) ≡ 1,

f1(x, y, z) = 1 + x+ y2 + x2y + x4 + y5 + x2y2z2,

f2(x, y, z) = 0.75e−(9x−2)
2/4−(9y−2)2/4−(9z−2)2/4

+0.75e−(9x+1)2/49−(9y+1)/10−(9z+1)/10

+0.5e−(9x−7)
2/4−(9y−3)3/4−(9z−5)2/4

−0.2e−(9x−4)
2−(9y−7)2−(9z−5)2 ,

f3(x, y, z) = (1 + tanh(−9x− 9y + 9z))/9,

f4(x, y, z) = (1 + sign(−9x− 9y + 9z))/9.

The exact values are given by:

(43)



∫
S2 f0 = 4π∫
S2 f1 = 216π

35 ,∫
S2 f2 = 6.6961822200736179523 . . . ,∫
S2 f3 = 4π

9 ,∫
S2 f4 = 4π

9 .

The functions f1, f2, f3 and f4 are represented on Fig. 4.
The function f1 is a polynomial function of degree 6. Its expansion in Spherical Harmonics Y mn

therefore involves values of n ≤ 6. One expects an excellent accuracy of any spherical quadrature
rule for this function. In the contrary, f2, f3 and f4 have an infinite Spherical Harmonics expansion.
The function f2 is smooth whereas f3 has sharp gradients. The function f4 is a limiting case of f3
and is discontinuous. The numerical results for several values of the Cubed Sphere parameter N
are displayed in Table 3. The total number of nodes on S2 is given in each case. Following [8], we
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Figure 4. The set of test functions f1, f2, f3 and f4.

display the accuracy for the test functions in (42), by retaining the worst case among 1000 random
solid rotations operated on the argument (x, y, z) of the function. The results for f4 are identical
to the results for f3 and are therefore not reported. A fourth order convergence rate is observed
on Fig. 5. The accuracy is very good, compared to results reported elsewhere. For example, for a

N Number of nodes |I(f0)−Qa(f0)| |I(f1)−Qa(f1)| |I(f2)−Qa(f2)| |I(f3)−Qa(f3)|
4 98 1.0023(-2) 1.623(-2) 1.721(-2) 1.114(-3)

6 218 1.9528(-3) 2.900(-3) 2.638(-3) 2.170(-4)

8 386 6.1462(-4) 9.849(-4) 8.320(-4) 6.829(-5)

10 602 2.5111(-4) 4.008(-4) 2.157(-4) 2.790(-5)

12 866 1.2093(-4) 1.900(-4) 7.791(-5) 1.344(-5)

14 1178 6.5219(-5) 1.017(-4) 3.810(-5) 7.247(-6)

16 1538 3.8209(-5) 5.828(-5) 2.080(-5) 4.245(-6)

32 6146 2.3848(-6) 3.747(-6) 1.339(-6) 2.650(-7)

64 24578 1.4900(-7) 2.258(-7) 8.089(-8) 1.656(-8)
Table 3. Accuracy of the quadrature rule Qa for the test functions f0, f1, f2 and
f3 in (42). The errors for f4 are identical to the errors for f3. The result corre-
sponds to the worst case among 1000 randomly selected solid rotations operated
on the argument (x, y, z) of the functions f1, f2, f3.

Cubed Sphere with parameter N ≤ 12, corresponding to 6N2 + 2 ≤ 1000 quadrature nodes on the
sphere, the accuracy is of the same order as the one obtained with optimally selected quadrature
nodes [8].
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Figure 5. Quadrature error for the test functions f1, f2 and f3 obtained with
rule Qa in function of the square root of the number of quadrature nodes on the
sphere (6N2 +2 nodes). The accuracy is indicated for each function. Fourth-order
accuracy based on regression lines is observed in the three cases. The worst case
among 1000 randomly selected solid rotations on the argument (x, y, z) of the
functions is displayed. The results for f4 are identical to the ones of f3. The slope
for the constant function f0 is 4.01 (not shown).

Remark 3.5. A proof of the fourth order accuracy of the rule Qa is not straightforward. In
particular, it cannot be simply deduced from the accuracy of the trapezoidal rule in one dimension,
since the rule Qa is not exactly a tensor product rule on each panel, see Remark 3.2.

4. A second quadrature rule

4.1. Derivation of the rule Qb. As shown in Prop. 3.1, the quadrature rule Qa in (19) is exact
for a proportion of 7/8 of all Spherical Harmonics. However, it is in general not exact for the
remaining 1/8 Spherical Harmonics. In this latter case, it is numerically observed to be fourth-
order accurate with respect to the parameter 1/N , (see Fig. 5 and Remarks 3.4 and 3.5). This
fact suggests to look for a new rule Qb such that:

• it keeps the 7/8 exactness property
• it has a better accuracy than Qa for the 1/8 remaining Spherical Harmonics.

In order to do this, the idea is to design the rule Qb as a perturbation of Qa in the following way:
(1) The rule Qb keeps the same structure than Qa i.e.:

(44) Qb(f) =

(V I)∑
k=(I)

Q̂k(f),
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(2) The contribution of the panel Pk is

(45) Q̂k(f) = ∆ξ∆η

N/2∑
i,j=−N/2

ci,j ĝi,jfk(ξi, ηj)

where the weight ĝi,j is a perturbation of of the geometric weight gi,j of the form:

(46) ĝij = gi,j + εi,j .

It results from (44,45) that the rule Qb can be expressed as:

(47) Qb(f) = Qa(f) + ∆ξ∆η

(V I)∑
k=(I)

N/2∑
i,j=−N/2

ci,jεi,jfk(ξi, ηj).

If the values εi,j satisfy the symmetries (25) and (26) then by Prop. 3.1, the rule Qb satifies the
7/8 property as well.

Let us call I the set of indices (i, j) such that 0 ≤ j ≤ i ≤ N/2. This set is represented in Table
1 by boldface letters. Recall that |I| = qN = (N + 2)(N + 4)/8. The term Qk(f) in (17) can be
expressed as

(48) Qk(f) = ∆ξ∆η
∑

(i,j)∈I

gi,j f̂
k
i,j .

where f̂ki,j denotes, for (i, j) ∈ I and (I) ≤ k ≤ (V I), (recall that fk = f ◦ ϕk, see (15-17)):

(49) f̂ki,j = ci,j
∑

(i′,j′)|gi′,j′=gi,j

fk(ξi′ , ηj′).

With this notation, (45) can be expressed as

(50) Qk(f) = ∆ξ∆η
∑

(i,j)∈I

(gi,j + εi,j)f̂
k
i,j .

4.2. Determining the weights εi,j. Now we need to evaluate suitable values of the qN unknowns
(εi,j)(i,j)∈I . Let us denote by

(51) ψ1 = Y 0
0 , ψ2 = Y 0

2 , ψ3 = Y 0
4 , ψ4 = Y 4

4 , . . .

the sequence of the Spherical Harmonics Y mn with n even and m ≥ 0, m ≡ 0 (mod 4). This is the
sequence of the 1/8 of all Spherical Harmonics possibly not exactly integrated by the rule Qa (see
Prop 3.1).

Let us define the set of equations for the values εi,j as

(52) Qb(ψl) = I(ψl), 1 ≤ l ≤ pN .

The integer pN , to be determined, is the number of Spherical Harmonics of the preceding form
taken in account in (52). This is a parameter of the rule Qb. Using (47), equation (52) is recast in
the form:

(53)
∑

(i,j)∈I

∆ξ∆η

(V I)∑
k=(I)

(ψ̂l)
k
i,j

 εi,j = I(ψl)−Qa(ψl), 1 ≤ l ≤ pN .
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Lemma 4.1. For each l ≤ 0, (I) ≤ k ≤ (V I) and (i, j) ∈ I,
(54) I(ψl)−Qa(ψl) ∈ R

and

(55) (ψ̂l)
k
i,j ∈ R.

Proof. Let ψl = Y mn with n = 2n′, m = 4m′, 0 ≤ m ≤ n. The imaginary part of Y mn (x) is called
Hm
n (x). According to (2), Hm

n (x) is expressed as

(56) Hm
n (λ, θ) = Nm

n P
m
n (sin θ) sin(mλ).

The imparity with respect to the longitude variable λ gives

(57) Hm
n (−λ, θ) = −Hm

n (λ, θ).

The relation g−i,j = gi,j combined with (57) implies that the discrete integral of Hm
n on the panel

P(k) with k = (I) is

(58) Qk(Hm
n ) = 0.

Furthermore the relation (35) with p = ±2m′, m = 4m′ gives the relation (58) on the two panels
k = (II) and k = (IV ). Next, (33) yields (58) for the panel k = (III). Consider now the panel
k = (V ). The value Q(V )(H

m
n ) can be decomposed in four terms each of them corresponding to

an angular sector, see (16):

(59)

Q(V )(H
m
n ) =

N/2∑
i,j=−N/2

ci,jgi,j [H
m
n ](V )(ξi, ηj)

=
∑

(i,j)| j<−|i|

ci,jgi,j [H
m
n ](V )(ξi, ηj) +

∑
(i,j)| i≥|j|

ci,jgi,j [H
m
n ](V )(ξi, ηj)

+
∑

(i,j)| j≥|i|

ci,jgi,j [H
m
n ](V )(ξi, ηj) +

∑
(i,j)| i<−|j|

ci,jgi,j [H
m
n ](V )(ξi, ηj).

In the right hand side of (59), the first term vanishes, due to (57) and the relation g−i,j = gi,j .
The relations (34) and (35) imply that the three other terms also vanish. The argument is similar

for the panel k = (V I). A similar argument shows that the imaginary part of
(
ψ̂l

)k
i,j
∈ R for all

l ≥ 0, (i, j) ∈ I and (I) ≤ k ≤ (V I) also vanish. Therefore Qa(ψl) ∈ R and since I(ψl) ∈ R, the
relation (54) holds. �

The set of relations (53) forms a real linear system

(60) Aε = b,

with unknown vector

(61) ε = (εi,j)(i,j)∈I ∈ RqN .

As mentioned above, the number pN of Spherical Harmonics Y mn with n even and m ≡ 0 (mod 4)
to be taken in account in (52) has to be determined.

In the following we have selected the value pN = N2/4. This value was obtained by plotting
the quadrature errors |I(f) − Qb(f)| for the functions f1, f2 and f3 against the number pN of
Spherical Harmonics taken in account in the linear system (60). Three typical plots corresponding
to N = 4, 8 and 16 are shown on Fig. 6. A highly accurate zone is located on the left part of each
plot. Then a loss of accuracy, more or less abrupt, can be observed when pN becomes large. In
view of these results we have selected the value pN = N2/4 as a compromise for high accuracy of
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the rule. The location of pN = N2/4 is reported on these plots. This value is selected in order to
be located "well within" the highly accurate portion of the rule Qb. With this choice, the matrix
A in (60) is rectangular with

(62) A ∈MpN ,qN (R), pN = N2/4, qN = (N + 2)(N + 4)/8.

For N ≥ 8, pN = N2/4 > qN ' N2/8, and thus the system (60) is overdetermined. We solve
(60) using the pseudo-inverse of Moore-Penrose [7, Chap. 3, pp. 57sqq]. We have used the matlab
routine pinv.

Remark 4.2. Since the pseudo-inverse is used to solve the rectangular system (60), the identity
(52) for the Spherical Harmonic ψl, 1 ≤ l ≤ pN is not exactly satisfied, but only approximately.
Therefore, strictly speaking, the rule Qb does not integrate all Spherical Harmonics up to a certain
order. In particular, there is no meaning for the McLaren index [13], reporting the ratio of the
maximal degree of Spherical Harmonics exactly integrated to the number of quadrature nodes.
Despite this observation, the rule Qb was observed to be highly accurate on the numerical tests
performed so far.

Remark 4.3. The function Y 0
2 corresponds to (n,m) = (2, 0), (n even andm ≡ 0 (mod 4)). Thus it

belongs to the 1/8 compementary set of Spherical Harmonics in Prop. 3.1. However, as mentioned
in Remark 3.4, Y 0

2 is exactly integrated by the rule Qa. Therefore Y 0
2 could be taken out from the

set of functions ψl in (52). The function Y 0
2 corresponds to a null line in (60). Keeping it does not

prevent the generalized inverse to be used to solve the linear system (60).

Remark 4.4. An important question is whether or not the matrix A in (60) is full rank. This
problem is open for the moment. Preliminary numerical experiments suggest that the matrix
A may be not full rank for small values of the parameter N , which means for a coarse Cubed
Sphere (N ≤ 12), and becomes full rank for larger values of N . This question requires further
theoretical and numerical investigation. In our numerical experiments, we never observed numerical
ill conditioning effects of the matrix A when solving the linear system (60).

4.3. Magnitude of the parameters εi,j. In Section 4.1, we claimed that the perturbation
weights εi,j are small perturbation of the geometric weights gi,j . We report in Fig. 7, the mag-
nitude of the coefficients εi,j ∈ R, solution of the equation (60). This magnitude is numerically
evaluated as maxi,j |εi,j |. Clearly this maximum is small, with respect to the metric tensor terms
gi,j , which satisfies gi,j ∈ [0.5, 1], see (18). In fact, as shown in Fig. 7, the maximum of |εi,j | de-
creases in O

(
1
N2

)
when N increases. This suggests that the rule Qb can be effectively considered

as a perturbation of the rule Qa.

4.4. Efficiency of the rule Qb. In this section, we numerically evaluate the efficiency of the rule
Qb on several Spherical Harmonics. Since the rule Qb possesses the 7/8 property, (see Prop. 3.1),
we consider how Qb behaves when approximately integrating any given Spherical Harmonic Y m0

n0

with n0 even and m0 ≡ 0 (mod 4). On Fig. 8 three typical cases are displayed: (n0,m0) = (16, 8),
(n0,m0) = (24, 4), and (n0,m0) = (40, 16). As can be observed in these three cases, there is
an abrupt enhancement of the accuracy of the rule Qb for some threshold value of the number
of quadrature nodes. At this threshold value, the function Y m0

n0
becomes included in the set of

Spherical harmonics defining (60) and the approximation I(Y m0
n0

) ' Qb(Y m0
n0

) holds up to computer
accuracy. Note that this behaviour occurs despite the fact that the linear system (60) is only
approximately satisfied by the least square solution ε. These observations have been confirmed in
other cases.
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Figure 6. Quadrature error for the test functions f1, f2 and f3 in function of the
number pN of the Spherical Harmonics taken in account in (52) defining the rule
Qb. The retained value pN = N2/4 is indicated with a dashed line.

Our numerical experiments can be summarized as follows. The rules Qa and Qb give similar
results for the Spherical Harmonics not taken in account in the interpolation in (53), (or equiva-
lently, in the matrix A in (60)). This indicates that the rule Qb preserves the good convergence
properties of the rule Qa when N increases for all the functions Y mn with n ≥ n0, where n0 is any
fixed value. Furthermore, the rule Qb integrates up to computer accuracy a Spherical Harmonic
Y mn from the moment it is taken in account in the linear system (53) for the perturbation weights
ε. Finally, the greater is N , the more Spherical Harmonics can be taken in account in the matrix
A.

4.5. Numerical results. In Table 4, numerical results obtained with the rule Qb (44) applied to
the set of test functions (42) are reported. As in Table 3, the worst case among 1000 randomly
selected solid rotations is retained. According to results displayed in Table 4 and Fig. 9, the
quadrature rule Qb is much more accurate than the rule Qa. Indeed, for a very coarse Cubed Sphere
with parameter N ' 6, the computer accuracy is reached (' 10−15) for the functions f1, f3 and
f4. This accuracy can be explained as follows. Since f1 is a polynomial, only the first Spherical
Harmonics are useful, and therefore when the parameter pN is such that pN ≥ 9, all Spherical
Harmonics in the decomposition of f1 are integrated exactly by the rule Qb. The functions f3 and
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Figure 7. Maximum of the parameters |εi,j | in (60) with respect to N , the
parameter of the Cubed Sphere. The values of N are the 17 values N =
4, 6, 8, . . . , 28, 30, 32, 48, 64. The magnitude of (εi,j)(i,j)∈I behaves numerically as
1/N2.

N Number of nodes pN |I(f0)−Qb(f0)| |I(f1)−Qb(f1)| |I(f2)−Qb(f2)| |I(f3)−Qb(f3)|
4 98 4 3.553(-15) 1.646(-4) 1.376(-2) 6.661(-16)

6 218 9 5.329(-15) 7.105(-15) 2.664(-3) 6.661(-16)

8 386 16 1.776(-15) 3.553(-15) 8.085(-4) 4.441(-16)

10 602 25 5.329(-15) 1.066(-14) 1.067(-4) 6.661(-16)

12 866 36 1.776(-15) 3.553(-15) 1.270(-5) 2.220(-16)

14 1178 49 1.776(-15) 3.553(-15) 1.272(-6) 4.441(-16)

16 1538 64 1.776(-15) 1.066(-14) 8.212(-8) 6.661(-16)

32 6146 256 3.553(-15) 7.105(-15) 3.610(-13) 6.661(-16)

64 24578 1024 3.553(-15) 7.105(-15) 2.000(-15) 4.441(-16)

Table 4. Accuracy of the quadrature rule Qb for the test functions f1, f2 and f3
in (42). The computer accuracy is reached from a number of quadrature nodes as
low as 218 for the functions f1 and f3. The results correspond to the worst case
among 1000 randomly selected solid rotations applied to the arguments (x, y, z)
of the functions f1, f2 and f3.

f4 illustrate the accuracy of the rule Qb, which is due to the symmetry properties (25), (26) and
(27) combined with the good integration of Y 0

0 . As mentioned in [4], the Spherical Harmonics in
the decomposition of f3 are limited to Y 0

0 and Y mn with n odd. Thus it is sufficient for a rule
to integrate exactly Y 0

0 since the Spherical Harmonics with an odd degree are exactly integrated
thanks to the 7/8 property. The same observation holds for f4. Consequently, from the moment
that pN ≥ 1, the rule Qb already gives much better results than the rule Qa simply because Y 0

0 is
the first Spherical Harmonic taken in account in the matrix A in (60).

In the case of f2, the improvement is less dramatic. This is because there are Spherical Harmonics
in the decomposition of f2, which are not taken in account in the matrix A in (60). Therefore the
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Figure 8. The three figures display the integration errors in function of N , the
parameter of the Cubed Sphere, for the three Spherical Harmonics Y 8

16, Y 4
24 and

Y 16
42 . The Log scale is used along x and y. The thin curve with × symbols

corresponds to the rule Qa. The bold curve with ∗ symbols corresponds to the
rule Qb. Observe on the third plot a punctual better accuracy of Qa(Y 16

42 ) than of
Qb(Y

16
42 ) for the particular value N = 16. This is a superconvergence phenomenon

of Qa in this case.

error decreases progressively. However the decreasing rate is very fast: the slope shown in Fig. 9 is
numerically evaluated as close to 12, instead of 4 for the rule Qa (see Fig. 5). Overall, as observed
in Table 4, the level of accuracy obtained with Qb is very good when compared with quadrature
rules using optimally selected set of nodes, [8].

5. Conclusion

In this paper, we have considered a method to build quadrature rules over the sphere with
the Cubed Sphere gridpoints as quadrature nodes. The symmetry of this set of nodes gives the
property that when combined with a suitably choosen set of weights, a ratio of 7/8 of all Spherical
Harmonics are exactly integrated, independently of the size of the Cubed Sphere. Two rules of
this kind are introduced. The first rule Qa is an analog of the trapezoidal rule on the sphere. The
second rule Qb, is an enhancement of the rule Qa, and provides very good accuracy on a standard
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Figure 9. Quadrature error for the test functions f1, f2 and f3 obtained with
the rule Qb in function of the square root of the number 6N2 + 2 of quadrature
nodes on the sphere. The results for f4 are identical to the results for f3. The
computer accuracy is obtained for all grids for f0 (not reported). The convergence
rate obtained by the regression line is close to 12 for the function f2.

set of test functions. It is observed to be efficient not only when applied to regular functions, but
also when applied to discontinuous functions such as f4 in (42).

Ongoing studies focus on the one hand on mathematical properties and numerical analysis of
the rules Qa and Qb. On the other hand, a systematic approach for the logic of the design of the
rule Qb as a perturbation of Qa is needed. This concerns in particular the choice of the functions
ψl in the relation (52).
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