
A CARTESIAN COMPACT SCHEME FOR THE NAVIER-STOKES EQUATIONS IN

STREAMFUNCTION FORMULATION IN IRREGULAR DOMAINS

M. BEN-ARTZI∗, J.-P. CROISILLE∗, AND D. FISHELOV∗

Abstract. In [3] we introduced an embedded Cartesian scheme for the biharmonic problem in two dimensions.
Here we extend this methodology to the 2D Navier-Stokes system. Hermite (or Birkhoff) interpolation is invoked
in one and two dimensions to obtain finite difference operators. The consistency analysis of the discrete formulas
for irregular grids is emphasized. Numerical results demonstrate remarkable accuracy for a series of test cases for
flows in elliptical domains.
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1. Introduction

In [3] an embedded Cartesian finite difference scheme for the biharmonic problem in irregular domains was
introduced. A regular Cartesian grid is laid out in the embedded domain. In most of the interior physical domain
the regular Cartesian grid is kept unchanged. Thus, points which are far from the boundary are the center of
regular elements containing the points’ immediate neighbors. However, irregular elements are constructed around
points which are close to the boundary. As a result, the grid is not necessarily aligned to the boundary, as in the
case of body fitted grids.

In case the physical domain is not a rectangular, but rather an irregular domain, the scheme results in a Cartesian
9-point compact scheme at points ”far” from the boundary. However, the Cartesian stencil is distorted around
points which are close to the boundary. A crucial tool in our embedding approach consists of classifying grid points
near the boundary. First, the Cartesian points are labeled as interior points if they are inside the physical domain,
exterior points if they are outside the domain, and boundary points if they are on the boundary. This is called a
topological coding. Points which are inside the domain are then divided into three subcategories. This is named
a logical coding (see Fig. 1). A first category contains regular calculated points; their neighboring points reside
on the Cartesian grid and are far enough from the boundary. A second category contains edge points; these are
points which are too close to the boundary and therefore they are not included in the computational stencil, but
are replaced by points on the boundary. A third category contains irregular calculated points which are close to
the boundary and at least one of their neighboring points is too close to the boundary. Irregular calculated points
are surrounded by a distorted stencil. Fig. 2 shows the stencil of an irregular calculated point M0, which includes
the edge point M̃2. The topological and logical coding are shown in Fig. 1 for an ellipse. We refer to [3, 7] for
more details.

Extending finite difference approximations to irregular domains is not a new idea. It originates from early
works such as [34]. Important contributions in the 70’s with emphasis on the capacitance matrix method include
[12, 31]. A significant renewal of interest in this approach is recently observed. For example, Poisson solvers are
suggested in [22, 19]. For time dependent problems we refer to [1, 16]. Concerning the Navier-Stokes equations
we refer to [28, 21]. Approximating the Navier-Stokes equations in pure stream function formulation using a high
order compact scheme was first introduced in [10] in the case of a square domain (see also [20]). Extending this
kind of scheme to irregular geometries was considered in [30, 23] using a boundary fitted grid. Another approach
for handling Navier-Stokes equation in irregular geometries was introduced in [17]. We refer to Section 4 for the
relation of the scheme [17] to the present work.

Here the compact scheme is based on a particular interpolation polynomial of degree six, combined with a
compact interpolation for the gradient. The main features of this approximation have been introduced in [3]. As
in the approach to finite differences using an interpolating polynomial presented in classic treatises [14, 24, 26],
the key problem is to find a suitable polynomial which interpolates the ”data” on a stencil around any calculated
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Figure 1. Ellipse embedded in a square supporting a Cartesian grid. Left panel: Topological
coding of the points: the points are exterior (black small circles), boundary (triangles) or internal
(clear small circles). Right panel: the logical coding of the different kinds of interior points are
subdivided into Regular calculated points (small circles), Irregular calculated points (large circle),
Edge points (open squares).

M1(−h1, h1)
M2(0, h2)

M3(h3, h3)

M4(−h4, 0) M5(h5, 0)

M6(−h6,−h6)
M7(0,−h7)

M8(h8,−h8)

M0(0, 0)M̃2

M̃3

M̃5

M̃8

Figure 2. The figure shows the stencil of the irregular calculated point M0 as the dash line. It
consists of the set {M1,M2,M3,M5,M8,M7,M6,M4}. The points M1, M4, M6 and M7 belong
to the Cartesian grid. The points M2, M3, M5 and M8 belong to the boundary of the domain.

The point M̃2 is labeled as an edge point since it it too close to the boundary to be a calculated
point. The point M2 is defined as the point on the boundary which lies on the line connecting

M0 and M̃2.

point xi,j . For all calculated points, this is a 9 point compact stencil. At regular points, the stencil is regular;
only at irregular points (near the boundary) the stencil is distorted (see Fig. 2). Differentiating this polynomial
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provides finite difference operators at xi,j in terms of the data. When collecting the discrete equations for all
points xi,j the data become ”unknowns” to be computed as solution of the global linear system. Note that a
full mathematical convergence analysis of our scheme is not available yet. However, elements of error bounds and
convergence analysis are available in one dimension [6, 18, 11, 9, 8]. The interest in this approach is supported by
the remarkable accuracy of the numerical results obtained so far [3, 17, 7].

The outline of the paper is as follows. In Section 2 we summarize the one-dimensional design of the compact
scheme using a polynomial approach. In Section 3 the structure of the two dimensional polynomial, introduced in
[3] is outlined. Emphasis is given on the directional splitting between the two axis directions x and y and the two
diagonal directions x+y and x−y. In Section 4, we display several facts concerning discrete operators on compact
stencils, regular or not, which are used in our approximation to the Navier-Stokes equation. Finally, Section 5
displays numerical results obtained for the Navier-Stokes system in two dimensions for irregular domains.

2. Irregular Finite Difference operators in one dimension

In this section, we describe the basics of our finite difference scheme for the one dimensional case.
Let us consider the interval I = [a, b] with the irregular grid

(2.1) a = x0 < x1 < ... < xN−1 < xN = b.

We denote by hj the spacing between neighboring points, thus hj = xj − xj−1, j = 1, ..., N and h = [h1, . . . , hN ].

xjxj−1 xj+1

uj−1

u′j−1

uj

u′j

uj+1

u′j+1

Figure 3. One dimensional Hermite interpolation (2.4). The unique polynomial p(x) = a0 +
a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 with the six data uj−1, u

′
j−1, uj , u

′
j , uj+1, u

′
j+1 is given in (2.5).

Furthermore, ε and h are defined by (see [3]),

(2.2)


h = max

j
hj , (i)

ε = min
j

(
hj+1

hj
,
hj
hj+1

)
. (ii)

The design of finite difference operators is based on a particular interpolation procedure of the data. For clarity
we consider the following two steps in the analysis.

• Interpolation of the data uj , u
′
j :

We first consider the case where each interpolating point xj carries the two interpolating data uj and u′j . The
values uj and u′j are supposed to be known data. The primary data uj stands for some approximation of u(xj)
and the value u′j approximates the derivative u′(xj), j = 1, . . . , N−1. In approximation theory [32], these data are
considered to be given, either as exact data or as measurements. To each point xj , j = 1, . . . , N − 1, we associate
a polynomial p(x)

(2.3) p(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5.

Assuming the knowledge of the six data uj , u
′
j , uj+1, u

′
j+1, uj−1, u

′
j−1 (see Fig. 3), p(x) is the solution of

(2.4)

{
p(xj) = uj , p(xj−1) = uj−1, p(xj+1) = uj+1,

p′(xj) = u′j , p′(xj−1) = u′j−1, p′(xj+1) = u′j+1.
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The coefficients aα in (2.3) are expressed in terms of uj−1, uj , uj+1, u
′
j−1, u

′
j , u
′
j+1 by

(2.5)

a0 = uj , a1 = u′j

(aα)j = A1,α(hj , hj+1)uj−1 + (−1)αA1,α(hj+1, hj)uj+1 +A2,α(hj , hj+1)uj

+B1,α(hj , hj+1)u′j−1 − (−1)αB1,α(hj+1, hj)u
′
j+1 +B2,α(hj , hj+1)u′j ,

The rational fractions A1,α(h1, h2), A2,α(h1, h2), B1,α(h1, h2) and B2,α(h1, h2), 2α ≤ 5 are

(2.6)


A1,2(h1, h2) =

h22 (5h1 + 3h2)

h21 (h1 + h2)
3 , A2,2(h1, h2) = −3h21 − 4h2 h1 + 3h22

h21 h
2
2

,

B1,2(h1, h2) =
h22

h1 (h1 + h2)
2 , B2,2(h1, h2) = −2

h1 − h2
h2 h1

,

(2.7)


A1,3(h1, h2) = −2

h2
(
h2 h1 − h22 + 5h1

2
)

h1
3 (h1 + h2)

3 , A2,3(h1, h2) = 2
(h1 − h2)

(
h1

2 − 3h2 h1 + h2
2
)

h1
3h2

3 ,

B1,3(h1, h2) = −h2 (2h1 − h2)

h1
2 (h1 + h2)

2 , B2,3(h1, h2) =
h1

2 − 4h2 h1 + h2
2

h1
,

(2.8)


A1,4(h1, h2) =

−5h2 h1 − 4h2
2 + 5h1

2

h1
3 (h1 + h2)

3 , A2,4(h1, h2) =
4h1

2 − 7h2 h1 + 4h2
2

h1
3h2

3 ,

B1,4(h1, h2) =
−2h2 + h1

h1
2 (h1 + h2)

2 , B2,4(h1, h2) = 2
h1 − h2
h1

2h2
2 .

(2.9)


A1,5(h1, h2) = 2

2h1 + h2

h1
3 (h1 + h2)

3 , A2,5(h1, h2) = 2
h1 − h2
h1

3h2
3 ,

B1,5(h1, h2) =
1

h1
2 (h1 + h2)

2 , B2,5(h1, h2) =
1

h1
2h2

2 .

Denoting

(2.10) ū =
[
[u1, . . . , uN−1], [u′1, . . . , u

′
N−1]

]
,

the discrete operator (Dα
x ū)j ' dα

dxαu(xj) (also denoted ∂αx u(xj)) at xj is related to aα by

(2.11) (Dα
x ū)j = α! (aα)j α = 2, 3, 4, 5.

We should denote the coefficients aα by aα(ū,h) and the discrete derivative (Dα
x ū)j by Dα

x (ū,h)j , but instead we
adopt the notation (2.11). The operator (Dα

x ū)j approximates ∂αx u(xj) in terms of the six data (uk, u
′
k)j−1≤k≤j+1

and of the two mesh spacing hj , hj+1. The truncation error analysis for Dα
x ū is given in Section 6.

• Approximating the derivative u′j by Hermitian derivatives ux,j
The discrete operators above depend on the gridfunction ū in (2.10). In particular, the vector of the derivatives
[u′1, ..., u

′
N−1] is assumed to be known. However, in our context below, the data u′j is not available 1. Thus, u′j

must be interpolated from the primal data uj . Here, this interpolation is obtained by mean of an interpolation
polynomial called q(x). This polynomial is a priori different from p(x) in (2.3). We define the polynomial q(x)
associated with xj as

(2.12) q(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4.

The gridfunction ux = [ux,1, . . . , ux,N−1] is calculated implicitly as follows. Suppose that ux,j−1 and ux,j+1 are
given. Then the vector b = [b0, b1, b2, b3, b4]T ∈ R5 is the solution of the Hermite interpolation problem

(2.13)

{
q(xj−1) = uj−1, q(xj) = uj , q(xj+1) = uj+1,

q′(xj−1) = ux,j−1, q′(xj+1) = ux,j+1.

1In some numerical methods, as the the finite element Discontinuous Galerkin approach, u′ is kept as a primal unknown.

4



The vector ux = [ux,j ]1≤j≤N−1 is then defined from the five data uj−1, uj , uj+1, ux,j−1, ux,j+1 by

(2.14) ux,j = q′(xj).

Relations (2.14) for j = 1, ..., N − 1 form a linear system with unknown ux, which is given for a general grid by

(2.15) α1,jux,j + ux,j + α2,jux,j = β1,juj−1 + β2,juj + β3,juj+1.

The five coefficients α1,j , α2,j , β1,j , β2,j and β3,j are

(2.16)


α1,j =

h2j+1

(hj+1 + hj)2
, α2,j =

h2j
(hj+1 + hj)2

, β2,j =
2(hj+1 − hj)
hjhj+1

,

β1,j = −
2h2j+1(2hj + hj+1)

hj(hj + hj+1)3
, β3,j =

2h2j (2hj+1 + hj)

hj+1(hj + hj+1)3
.

Relation (2.15) is called the Hermitian closure for the derivative. In [3, Lemma 4.2], it is shown that

(2.17) max
1≤j≤N−1

|u′(xj)− ux,j | ≤ C
h4

ε
max
x∈[a,b]

|∂5xu(x)|,

where ε is given in (2.2)ii. In the case of a regular grid h = hj = hj+1, j = 1, ..., N−1, (2.15) becomes the standard
Hermitian relation given by

(2.18)


1

6
ux,j−1 +

2

3
ux,j +

1

6
ux,j+1 =

uj+1 − uj−1
2h

, 1 ≤ j ≤ N − 1,

ux,0 = u′(a), ux,N = u′(b).

Assuming periodicity, the truncation error on a uniform grid is given by 2.

(2.19) (u∗)x,j − (∂xu)∗j = − h4

180
(∂5xu)∗j +O(h6).

Replacing the exact derivatives u′j(= ∂xuj) in (2.11) by the approximate values ux,j gives the finite difference

operator denoted by D̃α
xu:

(2.20) (D̃α
xu)j = α! (aα)j([u], [ux]) α = 2, 3, 4, 5.

The gridfunction ux = [ux,1, . . . , ux,N−1] is not [u′1, . . . , u
′
N−1] but it is rather its approximation by (2.15). In

addition this approximation is non-local (see Section 6). This implies that the truncation error at xj depends on

the full vector h and not only on hj , hj+1 as in (6.5). Consider the particular case of the two operators D̃2
x and

D̃4
x, which satisfy

(2.21) (D̃2
xu)j ' ∂2xu(xj), (D̃4

xu)j ' ∂4xu(xj).

We have

Proposition 2.1. Let u(x) be a smooth function. Assuming that the grid (2.1) is such that

(2.22) c h ≤ hj ≤ h, c > 0,

The truncation errors for D̃2
x and D̃4

x

(2.23) t̃2(u) = (D̃2
xu
∗)− (∂2xu)∗, t̃4(u) = (D̃4

xu
∗)− (∂4xu)∗

satisfy the estimates

(2.24)

{
|̃t2(u)| ≤ Ch3, (i)

|̃t4(u)| ≤ Ch, (ii)

where C is a constant depending only on u(x).

2Refer to Section 6 for more comments on truncation error analysis.
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Proof. The truncation error t̃2(u) is decomposed as

(2.25)

t̃2(u) = D̃2
xu
∗ − (∂2xu)∗

= D̃2
xu
∗ −D2

xu
∗︸ ︷︷ ︸

(I)

+D2
xu
∗ − (∂2xu)∗︸ ︷︷ ︸
(II)

.

The term (I) is the truncation error t2(u) in (6.5)a. It satisfies the estimate

(2.26) |(II)| ≤ C(u)h4.

Invoking (2.5), (2.6), (2.17), (2.20) and assuming that c ≤ ε, it is easy to see that (II) satisfies

(2.27)

|(II)| ≤ 2B1,2(hj , hj+1)|ux,j−1 − ∂xuj−1|
+ 2B1,2(hj+1, hj)|ux,j+1 − ∂xuj+1|
+ 2B2,2(hj , hj+1)|ux,j − ∂xuj |
≤ Ch3,

where C is a constant depending only on u. A similar argument is used for (2.24)ii. �
In the case of a regular grid, (i.e with h = hj , 1 ≤ j ≤ N − 1), the operators D̃2

xu and D̃4
xu are

(2.28)

 D̃2
xuj = δ̃2xuj = 2δ2xuj − δxux,j ,

D̃4
xuj = δ4xuj =

12

h2
(
δxux,j − δ2xuj

)
.

The nominal truncation error (i.e. assuming periodicity) of D̃2
x and of of D̃4

x are

(2.29)


(D̃2

xu
∗)j − (∂2xu)∗j =

h4

360
(∂6xu)∗j +O(h6),

(D̃4
xu
∗)j − (∂4xu)∗j = − h4

720
(∂8xu)∗j +O(h6).

In [4, 6], the operators δ̃2x and δ4x were introduced using the polynomial q(x) only, and not the polynomial p(x).
The reason is that when using ux,j instead of ∂xu(xj) in p(x), then p(x) and q(x) are identical. Here for clarity of
the presentation we choose to introduce separately the two polynomials p(x) and q(x). Another Hermitian closure
for the derivative, different from (2.14), could be selected to define the approximate values ux,j (see for example
Equation (3.37) in [5]). In fact, in the two dimensional setting introduced in [3], the polynomials p and q are
distinct, as will be seen below in Section 3.

Remark 2.1. The truncation results in Prop. 2.1 are in agreement with Equations (4.27) and (4.35) of [17].

Remark 2.2. We refer to [25, 33, 32] for a general presentation of Hermite interpolation.

Remark 2.3. The linear system (2.15) is distinct from the one employed to define the cubic splines derivatives,
[2, (2.1.14) p.12]. However, the two systems are close. Both coincide with (2.18) in the case of a regular grid. See
also [11].

3. Finite difference scheme on two dimensional irregular grids by interpolation

In two dimensions we consider a Cartesian grid in a rectangular domain embedding an irregular domain Ω. The
definition of the finite difference operators on Cartesian grids can be obtained in two ways. The first is by expanding
finite difference formulas in Taylor series (see [27]). In the second approach a local interpolating polynomial is
defined around each computational point which is the center point of an element (regular or irregular) inside the
physical domain. Successive differentiation of this polynomial provides discrete differential operators. This is done
in [35] for the Biharmonic operator. The latter has been extended in [3] to define a high order approximation to
the biharmonic operator on the stencil shown in Fig. 4. The polynomial P (x, y), defined in [3], is the solution of
a specific Birkhoff interpolation problem. 3 The polynomial P (x, y) ∈ P19 = Span{lk, k = 1, . . . 19} where the

3In a Birkhoff problem, the set of data carried by each point in the stencil is dependent on the point. We refer to [29] for a theory

of multivariate Birkhoff interpolation.
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M1(−h1, h1)
M2(0, h2)

M3(h3, h3)

M4(−h4, 0)
M0(0, 0)

M5(h5, 0)

M6(−h6,−h6)
M7(0,−h7)

M8(h8,−h8)

Figure 4. Case of an irregular stencil: the 8 neighbor nodes of M0 are the points M1, M2, M3,
M4, M5, M6, M7 and M8 with h = [h1, h2, h3, h4, h5, h6, h7, h8]. The 19 data determining uniquely
the polynomial P (x, y) in (3.2) are of two kinds. First, the 9 data for u are marked with circles.
Second, the 10 data corresponding to directional derivatives are marked with arrows.

M1(−h, h) M2(0, h)

M3(h, h)

M4(−h, 0) M0(0, 0) M5(h, 0)

M6(−h,−h)
M7(0,−h) M8(h,−h)

Figure 5. Same as for Fig. 4, but in the case of a regular stencil with step size h.

homogeneous polynomials lk(x) are

(3.1)



l1(x, y) = 1, l2(x, y) = x, l3(x, y) = x2, l4(x, y) = x3,

l5(x, y) = x4, l6(x, y) = x5, l7(x, y) = y, l8(x, y) = y2, l9(x, y) = y3,

l10(x, y) = y4, l11(x, y) = y5, l12(x, y) = xy, l13(x, y) = xy(x+ y),

l14(x, y) = xy(x− y), l15(x, y) = xy(x+ y)2, l16(x, y) = xy(x− y)2, l17(x, y) = xy(x+ y)3,

l18(x, y) = xy(x− y)3, l19(x, y) = x2y2(x2 + y2).
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The polynomial P (x, y) is equivalently expressed as

(3.2) P (x, y) = P (0, 0) + P1(x) + P2(y) + xyQ(x, y),

where

(3.3)



(a) P1(x) = a2x+ a3x
2 + a4x

3 + a5x
4 + a6x

5,

(b) P2(y) = a7y + a8y
2 + a9y

3 + a10y
4 + a11y

5,

(c) Q(x, y) = a12 + a13(x+ y) + a14(x− y) + a15(x+ y)2 + a16(x− y)2

+ a17(x+ y)3 + a18(x− y)3 + a19xy(x2 + y2).

Consider ψ(x, y) a given function and ψ∗i,j its restriction to the grid. The quintic polynomials P (0, 0) + P1(x) and

P (0, 0)+P2(y) solve interpolation problems of the form (2.4). The polynomial P (0, 0)+P1(x) ∈ Span{1, x, x2, x3, x4, x5}
is given by the 6 horizontally aligned data (see Fig.4):

(3.4)


Γ4(ψ) = ψ∗(M4), Γ5(ψ) = ψ∗(M0), Γ6(ψ) = ψ∗(M5),

Γ13(ψ) = −∂xψ∗(M4), Γ14(ψ) = ∂xψ
∗(M0), Γ16(ψ) = ∂xψ

∗(M5).

Similarly, the polynomial P (0, 0) + P2(y) ∈ Span{1, y, y2, y3, y4, y5} is determined by the 6 vertically aligned data

(3.5)


Γ8(ψ) = ψ∗(M7), Γ5(ψ) = ψ∗(M0), Γ2(ψ) = ψ∗(M2),

Γ18(ψ) = −∂yψ∗(M7), Γ15(ψ) = ∂yψ
∗(M0), Γ11(ψ) = ∂yψ

∗(M2).

Consider now the 8 diagonally aligned data. They are denoted as:

(3.6)


Γ3(ψ) = ψ∗(M3), Γ7(ψ) = ψ∗(M6), Γ9(ψ) = ψ∗(M8), Γ1(ψ) = ψ∗(M1),

Γ12(ψ) = (∂x + ∂y)ψ∗(M3), Γ17(ψ) = (−∂x − ∂y)ψ∗(M6),

Γ19(ψ) = (∂x − ∂y)ψ∗(M8), Γ10(ψ) = (−∂x + ∂y)ψ∗(M1).

Proposition 3.1. For any values α1, . . . , α8, there exists a unique polynomial Q(x, y) of the form (3.3)c satisfying
the 8 relations

(3.7) Γk(Q) = αk,

where k ∈ IQ = {3, 7, 9, 1, 12, 17, 19, 10}

Proof. Since the problem is linear, it is sufficient to prove that αk = 0, k ∈ IQ, implies that Q(x, y) ≡ 0. This
is easily obtained by analyzing Q(x, y) along the two diagonal directions x = y, x = −y: it is found that Q is
a quartic polynomial along these two directions with 5 zero data. This implies Q(x, y) ≡ 0 by considering the
coefficient of xy(x2 + y2). �
As a corollary, there exists a unique solution P (x, y) which is a solution of the 19× 19 linear system

(3.8) Γk(P ) = Γk(ψ∗), 1 ≤ k ≤ 19.

where the 19 data Γk(ψ∗) are defined in (3.4), (3.5) and (3.6). Denoting

(3.9) Γ(ψ∗) = [Γk(ψ∗)]1≤k≤19 :

the polynomial P (x, y) is expressed as,

(3.10) P (x, y) =

19∑
k=1

ak
(
Γ(ψ∗)

)
lk(x, y).

The expression of P (x, y) in terms of Γ(ψ∗) ∈ R19 and the lengths h ∈ R8 is obtained by symbolic calculation 4.
The decomposition (3.2) is applied as follows. First, the polynomials P1(x) and P2(y)) are calculated. They are
of the form (2.3), in the directions x and y respectively. The coefficients of P (x, 0) (resp. P (0, y)) are obtained

4performed in MAPLE
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by (2.5) in terms of h4, h5 (resp. h2, h7). Second, the polynomial Q(x, y) is calculated by solving a 8 × 8 system
deduced from Prop. 3.1. Third, the 8 data Γl(Q) in (3.6) are expressed in terms of the 19 data Γk(P ), k = 1, . . . , 19.
This is easily obtained using (3.2).

4. Discrete operators on compact stencils for the Navier-Stokes equations

Let Ω ⊂ R2 be a regular bounded domain. The Navier-Stokes system in pure stream function form and with
viscosity ν > 0 is

(4.1)



∂t∆ψ(t,x) +
(
∇⊥ψ · ∇(∆)

)
ψ(t,x)− ν∆2ψ(t,x) = f(t,x),

ψ(t,x) = g1(t,x),

∂ψ

∂n
(t,x) = g2(t,x), x = (x1, x2) ∈ ∂Ω.

with x = (x1, x2) ∈ Ω, t > 0. The velocity v(t,x) is related to ψ by

(4.2) v(t,x) = ∇⊥ψ(t,x) = (−∂2ψ, ∂1ψ).

Three spatial operators must be approximated: the Biharmonic operator ∆2ψ, the Laplacian operator ∆ψ and the
convective term C(ψ) =

(
∇⊥ψ ·∇(∆)

)
ψ. The approximations, described hereafter, are all based on the polynomial

P . They are called ∆2
h, ∆h and Ch respectively. The numerical scheme used hereafter is second order accurate.

It is expressed as

(4.3)


∆hψ

n+1/2 −∆hψ
n

∆t/2
= −Ch(ψn) +

ν

2

(
∆2

hψ
n + ∆2

hψ
n+1/2

)
+ (f(tn+1/4, .))∗,

∆hψ
n+1 −∆hψ

n

∆t
= −Ch(ψn+1/2) +

ν

2

(
∆2

hψ
n + ∆2

hψ
n+1
)

+ (f(tn+1/2, .))∗.

Refer to [10, 6] for the derivation of (4.3).

4.1. The Biharmonic operator. In this section, we briefly review various finite difference Biharmonic operators
used in regular stencils [10, 6] or irregular stencils [3, 7, 17]. The 9 point stencil in regular form in shown in Fig.
5 and in irregular form in Fig. 4. The Biharmonic operator is

(4.4) ∆2ψ(x, y) = ∂4xψ(x, y) + ∂4yψ(x, y) + 2∂2x∂
2
yψ(x, y).

The basic discrete Biharmonic is the one of Stephenson [35]. It operates on the 9 point regular stencil. It is
expressed as

(4.5) ∆2
hψi,j = δ4xψi,j + δ4yψi,j + 2δ2xδ

2
yψi,j .

The Hermitian derivative ψx,i,j (resp. ψy,i,j) is involved in δ4x, (resp. δ4y), (see Section 6). Both δ4x and δ4y are

fourth order. The operator ∆2
h is second order with truncation error

(4.6) ∆2
h(ψ)∗i,j − (∆2ψ)∗i,j =

h2

6

(
∂4x∂

2
y + ∂2x∂

4
y)ψ
)∗

+O(h4).

The second order accuracy in (4.6) is due to the approximation of the mixed term (∂2x∂
2
yψ)∗i,j by δ2xδ

2
yψ
∗
i,j . A

modified version ∆̃2
h of ∆2

h was introduced in [7, 17]:

(4.7) ∆̃2
hψi,j = ∆2

hψi,j −
h2

6
(δ2xδ

4
y + δ2yδ

4
x)ψi,j .

The perturbation is O(h2). It is designed to cancel the leading truncation term in (4.6). The operator ∆̃2
hψi,j is

fourth order. The truncation error is
(4.8)

∆̃2
h(ψ)∗i,j − (∆2ψ)∗i,j = −h4

(
1

720

(
(∂8xψ)∗ + (∂8yψ)∗

)
+

1

72

(
∂4x∂

4
yψ
)∗ − 1

180

(
(∂2x∂

6
yψ)∗ + (∂6x∂

2
yψ)∗)

))
+O(h6).
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Consider now extending (4.7) to the irregular stencil shown in Fig. 4. The polynomial P (x, y) =
∑19
k=1 aklk(x, y)

is associated to the point M0 with global coordinates (xi, yj) and local coordinates (0, 0). The approximate
Biharmonic operator at M0 is defined in terms of the data Γ(ψ∗) = [Γl(ψ

∗)]1≤l≤19 via

(4.9) ∆2
hψi,j =

19∑
k=1

ak(Γ(ψ∗))∆2lk(0, 0) = 24
(
a5(Γ(ψ∗)) + a10(Γ(ψ∗))

)
+ 16

(
a15(Γ(ψ∗))− a16(Γ(ψ∗))

)
.

It has been proved in Theorem 3.11 of [3] that if (u, ∂xu, ∂yu) are considered to be known exactly, then in analogy
with (6.5)c, ∆2

hψi,j in (4.9) satisfies

(4.10) |∆2
h(ψ∗)i,j − (∆2ψ)∗i,j | ≤ Ch2.

In fact, this estimate is optimal, since on a regular one dimensional grid, the operator ∆2
h coincides with D4

xuj in
(2.11), which is second order accurate (see (6.5)(c)).

In Section 5 we approximate the first order derivatives (∂xu, ∂yu) via the Hermitian derivative (2.15). The
latter are invoked in the approximation (4.9) of the Biharmonic operator. At regular points, the compact stencil
is regular (see Fig. 5), i.e. hk = h, 1 ≤ k ≤ 8. It has been proved in [7, pp. 227-228] that the operator (4.9)
coincides with (4.7), and therefore is fourth order accurate. At irregular points, which are near boundary, the
accuracy drops to a lower value.

Remark 4.1. An alternative approximate Biharmonic operator may be derived from the identity [15]

(4.11) ∆2ψ =
2

3

(
∂4ψ

∂x4
+
∂4ψ

∂y4

)
+

2

3

(
∂4ψ

∂η4
+
∂4ψ

∂ξ4

)
.

In (4.11) (η, ξ) are the diagonal variables defined by η = (x + y)/
√

2, ξ = (y − x)/
√

2. A discrete counterpart of
(4.11) was introduced in [17] as

(4.12) ∆̂2
hui,j =

2

3
(δ4xui,j + δ4yui,j) +

2

3
(δ4ηui,j + δ4ξui,j).

If all the first-order derivatives with respect to x, y, ξ, η are approximated via the Hermitian derivative, then the
scheme is fourth-order accurate. If the first-order derivatives with respect to x, y are computed via the Hermitian
derivative and the first-order derivatives with respect to ξ, η are computed from the first-order derivatives with
respect to x, y via the chain rule, then the scheme is second order accurate. In [17], the approximate Biharmonic
operator (4.12) was used only at near boundary points, whereas (4.7) was used at interior points. This resulted in
an observed fourth order accuracy of the numerical results.

4.2. Discrete Laplacian and convective term. Consider first the Laplacian. The discrete Laplacian used in
the sequel is the operator ∆h defined by

(4.13) ∆hψi,j =

19∑
k=1

ak(Γ(ψ∗))∆lk(0, 0).

This gives

(4.14) ∆hψi,j = 2
(
a2(Γ(ψ∗)) + a8(Γ(ψ∗))

)
.

The discrete Laplacian is easily proved to be fourth order. On a regular grid, ∆h satisfies

(4.15) ∆h = δ̃2x + δ̃2y.

In what follows, the convective term C(ψ) is approximated by Ch(ψ) defined by

(4.16) Ch(ψ) = −ψy
[
(∆ ◦ ∂x)P (0, 0)

]
+ ψx

[
(∆ ◦ ∂y)P (0, 0)

]
.

In terms of the coefficients ak(Γ(ψ∗)) this gives the formula:
(4.17)

Ch(ψ) = −ψy
(

6a4(Γ(ψ∗)) + 2 {a13(Γ(ψ∗)))− a14(Γ(ψ∗)}
)

+ ψx

(
6a9(Γ(ψ∗)) + 2a13 {Γ(ψ∗)) + a14(Γ(ψ∗)}

)
,

where a4, a9, a13, a14 are given in (3.3). In the case of a regular grid, (4.17) is second order accurate. For this
reason, the global order in space of the semi discrete scheme (4.3) is second order. This accuracy will be observed
numerically below in Section 5.
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grid 61× 61 Embed. sq. [−1, 1]× [−1, 1] Embed. sq. [−0.6, 0.6]× [−0.6, 0.6]
Total number of points 61× 61 = 3721 61× 61 = 3721

Number of regular calculated points 233 779
Number of irregular calculated points 80 142

Total number of calculated points 313 921
Number of edge points 38 52

Number of boundary points 6 26

Table 1. Cases 1 and 2: in the case of a computational grid 61× 61, the two embedding squares
[−1, 1]× [−1, 1] and [−0.6, 0.6]× [−0.6, 0.6] are compared. The embedding square [−1, 1]× [−1, 1]
corresponds to a coarse grid with 313 vertices inside the ellipse (5.1). The embedding square
[−0.6, 0.6]× [−0.6, 0.6] correspond to a fine grid with 779 vertices inside the ellipse (5.1).

Remark 4.2. We have chosen to approximate the convective term by (4.16) mainly for simplicity. We refer to
[5], formula (3.37) for a fourth order accurate convective term in the regular case. Extending the approach in [5]
to the present embedding context will be the topic of a forthcoming work. See also [17] for an alternative approach.

5. Numerical results for Navier-Stokes equation in pure streamfunction

In order to assess the accuracy of our scheme for the system (4.1) three numerical test cases are presented. In
section 5.1 we refer to Test cases 1 and 2, where the Navier-Stokes problem (4.1) is approximated in an ellipse. In
Test cases 1 and 2 the exact solutions are chosen to be polynomials in space and exponential in time. We inspect
the accuracy of the numerical solution by measuring the errors in ψ, ∂xψ and ∂yψ. Test case 2 was also considered
in [28], where a Cartesian embedding scheme for the Navier-Stokes equations was applied.

In section 5.2 we approximate the solution of the Navier-Stokes equation in a square. The physical domain
(the square) is rotated with some angle θ and then embedded in a bigger square, which is aligned to the x, y
grid. We analyze numerically the way the angle of rotation θ of the physical domain affects the accuracy of the
computation. For this purpose we consider an analytic solution of the Navier-Stokes equations in the embedded
square. We observe the behaviour of the numerical solution as a function of the rotation angle θ. From the
numerical results one may observe that the angle of rotation has limited impact on the quality of the numerical
results.

5.1. Navier-Stokes equation in an ellipse.

5.1.1. Test case 1. In Test case 1 and Test case 2, we consider the Navier-Stokes equation in an irregular domain
Ω, which is defined by the ellipse

(5.1)
x2

0.52
+

y2

0.252
= 1.

This ellipse is equivalently defined as the level set zero of the function

(5.2) ϕ(x, y) =
√

4x2 + 16y2 − 1.

In Test case 1, the forcing function f(t, x, y) is chosen to be the right-hand side of Equation (4.1), for which the
exact solution is

(5.3) ψe(t, x, y) = (x4 + y4)2 exp(t).

The spatial part (x4 + y4)2 is a polynomial of order 8. This polynomial is not included in the space P19 in (3.1).
The viscosity is chosen as ν = 1/1000. The following errors are reported in Table 2 at the final time Tf = 0.5:

(5.4)


max
i,j
|(ψe)∗i,j(Tf )− ψi,j(Tf )|,

max
i,j
|(∂xψe)∗i,j(Tf )− ψx,i,j(Tf )|, max

i,j
|(∂yψe)∗i,j(Tf )− ψy,i,j(Tf )|.

Fig. 7 put later displays the least-square convergence rates corresponding to this test case. Two embedding squares
are considered. In the first case the embedding square is [−1, 1]×[−1, 1] and in the second it is [−0.6, 0.6]×[−0.6, 0.6].
The number of points in each direction x, y are chosen to be the same for both cases. Therefore, the square
[−1, 1]× [−1, 1] corresponds to a coarser grid of the ellipse, and the square [−0.6, 0.6]× [−0.6, 0.6] corresponds to

11



Figure 6. Cases 1 and 2: The ellipse x2/0.52 + y2/0.252 = 1. Left panel: coarser grid with
embedding square is [−1, 1]×[−1, 1]. Right panel: finer grid with embedding square is [−0.6, 0.6]×
[−0.6, 0.6]. The three types of points inside the domain are: Regular calculated points (small
circles), Irregular calculated points (large circle) and Edge points (open squares).

Grid N ×N Nite e∞ Rate (ex)∞ Rate (ey)∞ Rate
20× 20 20 4.007(-5) 9.3139(-4) 2.3117(-4)
40× 40 80 8.4084(-7) 5.57 4.8964(-5) 4.25 2.3607(-5) 3.29
80× 80 320 1.5857(-7) 2.41 3.3584(-6) 3.87 4.4192(-6) 2.42

160× 160 1280 3.1146(-8) 2.34 8.6214(-7) 1.96 1.2430(-6) 1.83

Table 2. Case 1: Time dependent Navier-Stokes equation with exact solution ψ(t, x, y) = (x4 +
y4)2 exp(t). The domain is the ellipse x2/0.52 + y2/0.252 = 1. The embedding square is [−1, 1]×
[−1, 1], which corresponds to a coarser grid of the ellipse. The final time is Tf = 0.5 and the
viscosity is ν = 0.001. The asymptotic order of convergence is close to 2 for ψ and gradψ. This is
due to the convective term (4.16) which is approximated to order 2. Note that the errors are very
small in magnitude.

a finer grid. The detailed embedding grid is shown in Fig. 6 for the two cases. In comparing the two cases, we
would like to see whether the accuracy deteriorates in cases where the irregular domain is embedded in a larger
computational square. According to Table 1, there are 921 calculated points in the finer grid (which corresponds
to embedding the domain in [−0.6, 0.6]× [−0.6, 0.6]) and 313 in the coarser grid (which corresponds to embedding
the domain in [−1, 1]× [−1, 1]). As expected, a better accuracy is observed with the finer grid. However, in both
cases the errors are small and comparable in magnitude and the convergence rates are satisfactory (around second
order and above). See Tables 2, 3 and Fig. 7.

Remark 5.1. The size of the computational domain is usually adjusted to the physical domain as much as possible
to reduce the computational effort. However, with our present coding, a direct solver is used to solve the global
linear systems. The points exterior to the physical domain as well as the edge points are dummy points associated
to the identity matrix in global linear systems. Therefore, the computational effort is in fact smaller with the large
square [−1, 1]× [−1, 1] than with the small square [−0.6, 0.6]× [−0.6, 0.6].

5.1.2. Test case 2. We consider again the same ellipse (5.1) embedded in the square [−0.6, 0.6]× [−0.6, 0.6], which
corresponds to the fine grid in Sec. 5.1.1. The exact solution is

(5.5) ψe(t, x, y) =

{
K
(
r(x, y)α − ( 1

4 )α
)

cos(t), if ϕ(x, y) ≤ 1

0, otherwise ,
12



Grid N ×N Nite e∞ Rate (ex)∞ Rate (ey)∞ Rate
20× 20 20 5.8548(-5) 1.5547(-4) 6.5855(-5)
40× 40 80 8.7691(-7) 6.06 1.1092(-5) 3.81 1.7557(-5) 1.91
80× 80 320 3.2634(-8) 4.75 8.3786(-7) 3.73 1.0619(-6) 4.05

160× 160 1280 3.9768(-9) 3.04 1.2299(-7) 2.77 1.6797(-7) 2.66

Table 3. Case 1: Time dependent Navier-Stokes equation with exact solution ψ(t, x, y) = (x4 +
y4)2 exp(t). The domain is the ellipse x2/0.52 + y2/0.252 = 1. The embedding square [−0.6, 0.6]×
[−0.6, 0.6], which corresponds to a fine grid of the ellipse. The final time is Tf = 0.5 and the
viscosity is ν = 0.001.

Figure 7. Case 1: Navier Stokes equations in the ellipse x2/0.52 + y2/0.252 = 1 with ex-
act solution ψ(t, x, y) = (x4 + y4)2 exp(t). Regression line for the errors on ψ and ∂yψ. Left
panel: coarse grid with embedding square [−1, 1] × [−1, 1]. The averaged rate of convergence
for |(∂xψ)∗i,j(Tf )− ψx,i,j(Tf )|) is 3.41 (not shown). Right panel: fine grid with embedding square
[−0.6, 0.6]× [−0.6, 0.6]. The rate of convergence for |(∂xψ)∗i,j(Tf )−ψx,i,j(Tf )|) is 3.47 (not shown).
The grids are N = 20, 40, 80, 160. The accuracy for ψ and gradψ ranges between 2 and 4. In
addition, the error levels are very good, due to the polynomial regularity of the exact solution.

where r(x, y) = x2 + 4y2, α > 0 and K are parameters to be picked. The corresponding velocity is

(5.6)

{
v1(t, x, y) = −∂yψe(t, x, y),

v2(t, x, y) = ∂xψe(t, x, y).

The vorticity is

(5.7) ωe(t, x, y) = ∆ψe(t, x, y).

In [28] the particular case α = 1, K = 1 is considered. The shape of the exact and approximated solution are
shown in Fig. 8 (left panel). In Table 4 and in Fig. 9 (left panel) the numerical results are reported using our
scheme. Note that in this case the spatial part of the function ψe belongs to Span(x4, y4, x2y2) ⊂ P19. So that
there is no truncation error in the spatial direction x, y when using the scheme (4.3) and therefore there is no error
in space. The errors originate from the temporal discretization. Therefore, fourth order accuracy is expected and
observed in Table 4.

A more difficult case is obtained when we chose the exact solution of (5.5) with parameters α = 2 and K = 20.
The shape of the exact and approximated solutions are shown in Fig. 8 (right panel). The error levels for ψ, ∂xψ
and ∂yψ are reported in Table 5. The convergence slopes are displayed in Fig. 9. The observed accuracy is around
4 for ψ(t, x, y) gradψ(t, x, y) for the case α = 1, K = 1 and around 2 for the case α = 2, K = 20.
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Figure 8. Case 2: Ellipse (5.1) embedded in the square [−0.6, 0.6] × [−0.6, 0.6]. The Cartesian
embedding grid is 40× 40 and there are 80 time iterations in (4.3). The exact and approximated
solutions ψ(Tf = 0.5, x, y) are shown. Left panel: parameters α = 1,K = 1 in (5.5). Right panel:
parameters α = 2,K = 20 in (5.5).

Grid N ×N Nite e∞ Rate (ex)∞ Rate (ey)∞ Rate
20× 20 20 3.3063(-7) 1.8255(-6) 3.9043(-6)
40× 40 80 1.7633(-8) 4.23 1.2356(-7) 3.88 2.2015(-7) 4.15
80× 80 320 1.0386(-9) 4.09 7.8840(-9) 3.97 1.2288(-8) 4.16

160× 160 1280 6.8827(-11) 3.91 5.1392(-10) 3.94 7.8928(-10) 3.96

Table 4. Case 2: Time dependent Navier-Stokes equation with ν = 0.001 in the ellipse x2/0.52 +
y2/0.252 = 1 with exact solution (5.5) with the parameter α = 1 and K = 1. The final time is
Tf = 0.5. The embedding square is [−0.6, 0.6] × [−0.6, 0.6]. The asymptotic convergence rate is
close to 4 for ψ and gradψ. In this case, the truncation error in space vanishes since the exact
solution belongs to the space P19. The error is only due to the time integration scheme.

Grid N ×N Nite e∞ Rate (ex)∞ Rate (ey)∞ Rate
20× 20 20 1.3111(-2) 9.9770(-2) 3.1718(-1)
40× 40 80 1.7879(-3) 2.87 1.7643(-2) 2.50 3.5885(-2) 3.15
80× 80 320 4.3797(-4) 2.03 4.5494(-3) 1.996 6.9431(-3) 2.37

160× 160 1280 1.0803(-4) 2.02 1.1213(-3) 2.021 1.7036(-3) 2.03

Table 5. Case 2: Time dependent Navier-Stokes equation with ν = 0.001 in the ellipse x2/0.52 +
y2/0.252 = 1 with exact solution (5.5) with the parameter α = 2 and K = 20. The final time is
Tf = 0.5. The embedding square is [−0.6, 0.6]× [−0.6, 0.6]. The asymptotic order of convergence
is 2. The error levels for ψ, ψx and ψy are very good.

5.2. Invariance under grid rotation: a numerical study. In this test case we consider the domain Ω =
[−0.5, 0.5]× [−0.5, 0.5] embedded in the computational square [−1, 1]× [−1, 1]. The Navier Stokes equations (4.1)
with ν = 1/1000 are solved in Ω with a forcing term f(t, x, y) such that the radial, polynomial in space solution is
ψe(t, x, y) = (x2+y2)4e−t. The computation is repeated for a series of rotated positions of [−0.5, 0.5]×[−0.5, 0.5] in
[−1, 1]× [−1, 1]. This permits to evaluate the effect of the position of the calculated points on the global accuracy.
In particular, the labelling of near-boundary points changes when the domain changes of position.

We let rotate Ω from the position θ = 0 to the position θ = π/4 with an angle step ∆θ = π/360 (0.5 deg). For
each position θk = k∆θ, k = 0, . . . 90 the same computation is reproduced. First, a grid 20 × 20 is considered.
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Figure 9. Case 2: Navier Stokes equations in the ellipse x2/0.52 + y2/0.252 = 1 with exact
solution (5.5). The embedding square is [−0.6, 0.6] × [−0.6, 0.6]. Left panel: Parameters α = 1
and K = 1 in (5.5). The rate of convergence for |(∂xψ)∗i,j(Tf ) − ψx,i,j(Tf )|) is 3.94 (not shown).
Right panel: Parameters α = 2 and K = 20 in (5.5). The rate of convergence for |(∂xψ)∗i,j(Tf )−
ψx,i,j(Tf )|) is 2.59 (not shown).

Second, a grid 30× 30 is used. In each case, the maximum errors for ψ(Tf , x, y) and ∂xψ(Tf , x, y) are evaluated at
final time Tf = 0.25 using the scheme (4.3)

Several positions of Ω are shown in Fig. 10. The maximum errors for ψ(Tf , xi, yj) and ∂xψ(Tf , xi, yj) with the
grid 20 × 20 in function of the position angle are reported in Fig. 11. The error for ∂yψ(Tf , xi, yj) is similar to
the one obtained for ∂xψ(Tf , xi, yj). In Fig. 11, one sees that the error level slightly fluctuates in function of the
angle within the interval [10−4.6, 10−3.4] for ψ and [10−3.3, 10−2.2] for ∂xψ. In Fig. 12 the error levels are reported
with a grid 30 × 30. As expected, the error levels are smaller with the grid 30 × 30 than with the 20 × 20 grid.
The behavior of the error appears to be piecewise linear in all cases. The jumps in the errors are attributed to the
change of labelling of near boundary points when the physical domain rotates. Despite these jumps in the errors,
the magnitude of the error varies by a factor of 10 only and remains small. Overall, the errors behave satisfactorily.

6. Appendix: Truncation error analysis for Finite differences

In this section, we present a truncation error analysis for finite differences on a bounded interval. Suppose given
a regular function u(x) on [a, b]. The operator u(x) 7→ u∗ maps the function u(x) on the gridfunction obtained by
evaluating u(x) at gridpoints. We write

(6.1) u∗ = [u(x1), . . . , u(xN−1)],

meaning that the evaluation holds at all scales h > 0. The notion of gridfunction is convenient to express the
truncation error of a finite difference operator. For example the truncation error u 7→ t(u) of the operator δ2x is the
gridfunction obtained by

(6.2) t(u) = δ2x(u∗)− (∂2xu)∗.

The components of t(u) are

(6.3)

t(u)j = (δ2xu
∗)j − (∂2xu)∗j

=
h2

12
(∂4xu)∗j +O(h4).

In (6.3) u(x) is assumed to be periodic on [a, b]. This corresponds to a nominal order of 2. For any regular function
u(x), we denote ū∗ = [u∗, (∂xu)∗] where u∗, (∂xu)∗ are the gridfunctions associated to u(x) and ∂xu(x) respectively.

Consider for example the discrete operator Dα
x in (2.11). The truncation error u 7→ tα(u) is

(6.4) tα(u) = Dα
x ū
∗ − (∂αx u)∗.
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θ = 0 θ = π/16 θ = π/8

θ = 3π/16 θ = π/4

Figure 10. Effect of the position of the domain in the embedding square on the accuracy. The
square [−0.5, 0.5] embedded in the computational square [−1, 1] × [−1, 1] is shown at positions
θ = 0, θ = π/16, θ = π/8, θ = 3π/16 and θ = π/4. The type of near boundary points (Regular
calculated, Irregular calculated or Edge) varies according to their position with respect to the
boundary. See Fig. 1.

The leading term of the truncation error of Dα
x is found 5 in the case of a general irregular grid (2.1) for α = 1, 2, 3

and 4 as

(6.5)



t2(u)j = (D2
xū
∗)j − (∂2xu)∗j = − 1

360
h2jh

2
j+1∂

6
xuj +O(h5), (a)

t3(u)j = (D3
xū
∗)j − (∂3xu)∗j =

1

60
(h2jhj+1 − hjh2j+1)∂6xuj +O(h4), (b)

t4(u)j = (D4
xū
∗)j − (∂4xu)∗j = − 1

30
(h2j + h2j+1 − 4hjhj+1)∂6xuj +O(h3), (c)

t5(u)j = (D5
xū
∗)j − (∂5xu)∗j =

1

3
(hj+1 − hj)∂6xuj +O(h2) (d).

The leading terms in the right-hand sides of (6.5) are associated solely with the three gridpoints {xj−1, xj , xj+1}
and the two mesh spacing hj , hj+1. In the case where the boundary conditions are taken in account, the truncation

error will in general depend on the full set of values ∂
(5)
x u(xk), 1 ≤ k ≤ N − 1. In this case, only an estimate of

the truncation error is available in general. Even in the case of a regular grid with h = hj , the leading term of the

truncation error also depends on the full set of values ∂
(5)
x u(xk), 1 ≤ k ≤ N − 1. As an example we have for the

Hermitian derivative on a regular grid the following

Proposition 6.1 (Pointwise truncation error of the Hermitian derivative). Let u 7→ ux be the Hermitian gradient
defined in (2.18) with boundary data ux,0 = 0, ux,N = 0. Then the truncation error is expressed as the multi-point

5with MAPLE
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Figure 11. Case 3: Maximum error for the Navier-Stokes equation in the square with size
[−0.5, 0.5] × [−0.5, 0.5] embedded in [−1, 1] × [−1, 1]. The grid is 20 × 20. The exact solution
is ψ(t, x, y) = (x2 + y2)4 exp(−t). The final time Tf = 0.25 is reached in 20 iterations. The same
computation is repeated 91 times on the domain [−0.5, 0.5] × [−0.5, 0.5] rotated with an angle
θ = k π

360 for k = 0, ..., 90. Left panel: maximum error for ψ(t, x, y) at time Tf = 0.25 in function
of the position of the domain. Right panel: maximum error for ψx(t, x, y) at time Tf in function
of the position of the domain. The accuracy for ψy is similar to the one for ψx.

Figure 12. Case 3: Maximum error for the Navier-Stokes equation in the square [−0.5, 0.5] ×
[−0.5, 0.5] embedded in [−1, 1] × [−1, 1]. The grid is 30 × 30. The exact solution is ψ(t, x, y) =
(x2 + y2)4 exp(−t). The final time Tf = 0.25 is reached in 45 iterations. The same computation
is repeated 91 times on the domain [−0.5, 0.5] × [−0.5, 0.5] rotated with an angle θ = k π

360 for
k = 0, ..., 90. Left panel: maximum error for ψ(t, x, y) at time Tf = 0.25 in function of the position
of the domain. Right panel: maximum error for ψx(t, x, y) at time Tf in function of the position
of the domain. The accuracy for ψy is similar to the one for ψx.

Taylor expansion

(6.6) t(u)i = (u∗)x,i − (∂xu)∗i = − h4

180

N−1∑
j=1

αij(∂
(5)
x u)∗(xj) +O(h6).
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where

(6.7) αij =

N−1∑
k=1

ZikZ
j
k

1− λk/6
,

and

(6.8)


Zik =

√
2

N
sin

(
ikπ

N

)
, 1 ≤ i, k ≤ N − 1,

λk = 4 sin2

(
kπ

N

)
, 1 ≤ k ≤ N − 1.

Proof. The relation (2.18) is rewritten

(6.9) (I +
h2

6
δ2x)ux = δxu.

This gives that ux =
(

(I + h2

6 δ
2
x)−1 ◦ δx

)
u. Let x ∈ [0, 1] 7→ u(x) be a regular function. The truncation error

u 7→ t(u) is

(6.10)

t(u) = (u∗)x − (∂xu)∗(
I +

h2

6
δ2x
)−1(

δxu
∗ − (I +

h2

6
δ2x)(∂xu)∗

)
=
(
I +

h2

6
δ2x
)−1(

(δxu
∗ − (∂xu)∗)︸ ︷︷ ︸

(I)

− h2

6
δ2x(∂xu)∗︸ ︷︷ ︸
(II)

)
.

The term (I) is expressed as

(6.11) (I) =
h2

6
(∂3xu)∗ +

h4

120
(∂5xu)∗ + v,

where v satisfies

(6.12) ‖v‖L∞ ≤ Ch6‖(∂7xu)∗)‖L∞ .

The term (II) is

(6.13) (II) =
h2

6
δ2x(∂xu)∗ =

h2

6

(
(∂3xu)∗ +

h2

12
(∂5xu)∗ +

h4

360
w

)
,

where w satisfies

(6.14) ‖w‖L∞ ≤ C‖((∂7xu)∗)‖L∞ .

Therefore, the truncation error is

(6.15) t = (I +
h2

6
δ2x)−1

(
− h4

180
(∂5xu)∗ +O(h6)

)
.

Using the fact that −δ2xZk = λkZk and that (Zk)1≤k≤N−1 is an orthonormal basis of RN−1 gives the gridfunction
component t(u)i is

t(u)i = − h4

180

N−1∑
k=1

(1− λk/6)−1Zik

N−1∑
j=1

Zjk(∂5xu)(xj) +O(h6)

= − h4

180

N−1∑
j=1

αij(∂
5
xu)∗j +O(h6),

where the coefficients αij are given by (6.7). Therefore the leading term in the truncation error involves all the

values (∂5xu)∗j as given in (6.6). �
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7. Conclusion

The numerical approach to the Navier-Stokes equation in pure streamfunction introduced in [10] is extended
to irregular domains using embedded finite differences. The methodology presented uses high order interpolating
polynomials. The numerical results presented are promising. The accuracy obtained so far is remarkable and is in
line with the one observed in the purely Cartesian case.

The approach needs to be extended to more complex problems, with higher Reynolds numbers and more irregular
geometries. In addition higher order time schemes with A− and L− stable must be considered. Bifurcation
phenomena for flows in elliptical domains will be explored in the near future. Finally performing a stability
analysis in the spirit of [13, 36, 37] is also a perspective.
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