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Abstract. It is well-known that non-periodic boundary conditions reduce considerably the overall accuracy of
an approximating scheme. In previous papers the present authors have studied a fourth-order compact scheme
for the one-dimensional biharmonic equation. It relies on Hermitian interpolation, using functional values and
Hermitian derivatives on a three-point stencil. However, the fourth-order accuracy is reduced to a mere first-order
near the boundary. In turn this leads to an ”almost third-order” accuracy of the approximate solution . By a
careful inspection of the matrix elements of the discrete operator, it is shown that the boundary does not affect
the approximation, and a full (“optimal”) fourth-order convergence is attained. A number of numerical examples
corroborate this effect.
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1. Introduction

In this paper we discuss convergence in the sup-norm of a compact approximation to the one-dimensional
biharmonic equation. We consider a boundary value problem, so that the values of the function and its derivative are
given on the boundary. While the discrete scheme under consideration is fourth-order accurate, the truncation error
deteriorates to first-order at the boundary, affecting presumably the rate of convergence of the global approximation.
Indeed, in a previous work [10] we have obtained a “suboptimal” convergence rate of almost O(h3). We show here
that, in fact, the convergence rate is optimal, namely O(h4).

The Discrete Biharmonic Operator (henceforth DBO) considered here is both compact and of high order
accuracy. Such schemes have recently been gaining in popularity, as may be seen in the papers (a very partial list)
[2, 5, 6, 7, 8, 9, 11, 14, 15, 16].

A convergence analysis was performed in [12, 13, 1] in cases where the accuracy of the scheme deteriorates
near the boundary. In particular, in [12] and [13] a hyperbolic system of first order and a parabolic problem were
analyzed in the case where extra boundary conditions were given in order to ”close” the numerical scheme. It was
shown in [12, 13] that if the accuracy of the extra boundary conditions is one less than that of the inner scheme,
then the overall accuracy of the scheme is determined by the accuracy at inner points. In [1] it was proved for a
parabolic equation that if the scheme is of order O(hα) at inner points and of order O(hα−s) near the boundary,
then if s = 0, 1 the accuracy of the scheme is O(hα). However, if s ≥ 2 then the overall accuracy the scheme is
O(hα−s+3/2). In some sense our approach is an extension of the convergence analysis described in [12, 13, 1]. Here
we treat a differential equation of order four. Since our scheme is of fourth order at interior points and of first
order at near-boundary points, we have α = 4 and s = 3. We show that the overall accuracy of the scheme does
not deteriorate at all due to the lower-order approximation near the boundary.

Compact high-order schemes for the biharmonic equation can be traced back to Stephenson [16], who proposed
such a scheme in two dimensions. The DBO studied here may be viewed as a one-dimensional analog of Stephenson’s
scheme.

In our approach, the DBO is obtained as a fourth-order derivative of an interpolating polynomial. This poly-
nomial requires not only functional values at neighboring points, but also suitable approximate derivatives. It
turns out that in order to maintain accuracy at high order, the approximate derivatives need to be evaluated as
fourth-order accurate Hermitian approximations.

Here we investigate in detail the various mathematical features of the discrete approximation:
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• The truncation error of the biharmonic operator.
• Optimal, fourth-order, convergence of the discrete solution to the continuous one.

In Section 2 we construct a compact fourth-order approximation to the the biharmonic operator. In particular,
the approximation to the first-order derivative, called the Hermitian derivative, is described. The operators δ2

x, δx

as well as the Hermitian derivative are studied in Section 3. Their matrix representations are given, as well as the
fourth-order accuracy of the Hermitian derivative.

Section 4 is concerned with the study of the truncation error for the approximation of the fourth-order derivative,
namely the discrete biharmonic operator. It is shown that it is of fourth order at interior points and of first order
at near-boundary points.

Section 5 contains the optimal convergence of the discrete approximation to the exact solution of the one-
dimensional biharmonic problem. The error (see Theorem 6) is shown to be of fourth-order in the discrete l2h
norm.

In Section 6 we show numerical results, which validate the fourth-order accuracy of the discrete solution of the
one-dimensional biharmonic problem and some of its generalizations.

2. Derivation of three-point compact operators

We consider here the one-dimensional biharmonic equation on the interval [a, b]. For the simplicity of the
presentation, we choose homogeneous boundary conditions. The one-dimensional biharmonic equation is

(1)

{

u(4)(x) = f(x), a < x < b,
u(a) = 0, u(b) = 0, u′(a) = 0, u′(b) = 0.

We look for a high-order compact approximation to (1). We lay out a uniform grid a = x0 < x1 < ... < xN−1 <
xN = b. Here xi = ih for 0 ≤ i ≤ N and h = (b − a)/N .

In what follows, we shall use the notion of grid functions. A grid function is a function defined on the discrete
grid {xi}N

i=0. We denote grid functions with fraktur letters such as u, v. We have

(2) u = (u(x0), u(x1), · · · , u(xN−1), u(xN )).

In addition, we denote by u∗ = (u(x0), u(x1), · · · , u(xN−1), u(xN )) the grid function, which consists of the values
of u(x) at grid points.

We denote by l2h the functional space of grid functions. This space is equipped with a scalar product and an
associated norm

(3) (u, v)h = h

N
∑

i=0

u(xi)v(xi), |u|h = (u, u)
1/2
h .

The subspace of grid functions, having zero boundary conditions at x0 = a and xN = b, is denoted by l2h,0. For

grid functions u, v ∈ l2h,0, we have

(4) (u, v)h = h

N−1
∑

i=1

u(xi)v(xi).

We also define the sup norm for a grid function u

(5) |u|∞ = max
0≤i≤N

|u(xi)|.

We define the difference operators δx, δ2
x on grid functions by

(6) δxui =
ui+1 − ui−1

2h
, 1 ≤ i ≤ N − 1,

(7) δ2
xui =

ui+1 − 2ui + ui−1

h2
, 1 ≤ i ≤ N − 1.

In these definitions the boundary values u0, uN are assumed to be known.
Suppose that we are given data u∗

i−1, u∗
i , u∗

i+1 at the grid points xi−1, xi, xi+1. In addition, we are given some
approximations u∗

x,i−1, u
∗
x,i+1 for u′(xi−1), u

′(xi+1).
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We seek a polynomial of degree 4

(8) p(x) = u∗
i + a1(x − xi) + a2(x − xi)

2 + a3(x − xi)
3 + a4(x − xi)

4,

which interpolates the data u∗
i−1, u

∗
i , u

∗
i+1, u∗

x,i−1, u
∗
x,i+1.

The coefficients a1, a2, a3, a4 of the polynomial are

(9)







































a1 = 3
4h (u∗

i+1 − u∗
i−1) − (1

4u∗
x,i+1 + 1

4u∗
x,i−1),

a2 = 1
h2 (u∗

i+1 + u∗
i−1 − 2u∗

i ) − 1
4h (u∗

x,i+1 − u∗
x,i−1) = δ2

xu∗
i − 1

2 (δxu∗
x)i,

a3 = − 1
4h3 (u∗

i+1 − u∗
i−1) + 1

4h2 (u∗
x,i+1 + u∗

x,i−1),

a4 = − 1
2h4 (u∗

i+1 + u∗
i−1 − 2u∗

i ) + 1
4h3 (u∗

x,i+1 − u∗
x,i−1) = 1

2h2

(

(δxu∗
x)i − δ2

xu∗
i

)

.

The coefficients above require the data u∗
i and u∗

x,i. In the case where only the values of u∗
i are given, then

{

u∗
x,i

}N−1

i=1
have to be evaluated in terms of {u∗

i }
N
i=0. Looking at the first equation in (9), we see that a natural

candidate for u∗
x,i is

u∗
x,i = a1.

This yields

u∗
x,i =

3

4h
(u∗

i+1 − u∗
i−1) − (

1

4
u∗

x,i+1 +
1

4
u∗

x,i−1),

or equivalently

(10)
1

6
u∗

x,i +
2

3
u∗

x,i +
1

6
u∗

x,i+1 = δxu∗
i .

This is by definition the Hermitian derivative. If we introduce the three-point operator σx on grid functions by

(11) σxvi =
1

6
vi−1 +

2

3
vi +

1

6
vi+1, 1 ≤ i ≤ N − 1,

can rewrite (10) as

(12) σxu∗
x,i = δxu∗

i , 1 ≤ i ≤ N − 1.

Observe that a knowledge of

(13) u∗
x,0 = u′

0, u∗
x,N = u′

N ,

is needed in order to solve (12). In addition, we will invoke the following relation

(14) σx = I +
h2

6
δ2
x.

Natural approximations to u′′(xi), u′′′(xi), u′′′′(xi) are 2a2, 6a3, 24a4, respectively (see (9)). We use the notation

δ̃2
xu∗, δ3

xu∗, δ4
xu∗ for the following operators.

(15)























δ̃2
xu∗

i = 2a2 = 2δ2
xu∗

i − (δxu∗
x)i,

δ3
xu∗

i = 6a3 = 1
h2 (u∗

x,i+1 + u∗
x,i−1 − 2u∗

x,i) = (δ2
xu∗

x)i,

δ4
xu∗

i = 24a4 = 12
h2

(

(δxu∗
x)i − δ2

xu∗
i

)

.

This suggests that δ4
xu∗

i is an approximation to the fourth-order derivative of u at xi, namely,

(16) δ4
xu∗

i =
12

h2

(

(δxu∗
x)i − δ2

xu∗
i

)

.

This approximation, called the discrete biharmonic approximation, is the one-dimensional analog of the Stephen-
son’s scheme [16]. Note that, in the non-periodic setting, boundary values of ux should be given in order to compute
δ4
x at near boundary points x1, xN−1.
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3. The operators δ2
x, δx and the Hermitian derivative

3.1. Matrix representation of the Hermitian derivative. Let us provide now some matrix representations of
the operators appearing in the Hermitian gradient. Let U ∈ R

N−1 be the vector corresponding to the grid function
u ∈ l2h,0,

(17) U = [u1, · · · , uN−1]
T .

The vector corresponding to the grid function δxu is

(18)
1

2h
KU,

where the matrix K = (Ki,m)1≤i,m≤N−1 is the skew-symmetric matrix

(19) K =















0 1 0 . . . 0
−1 0 1 . . . 0
...

...
... . . .

...
0 . . . −1 0 1
0 . . . 0 −1 0















.

The matrix which corresponds to σx is P/6, where P is the positive definite (N − 1) × (N − 1) matrix

(20) P =















4 1 0 . . . 0
1 4 1 . . . 0
...

...
... . . .

...
0 . . . 1 4 1
0 . . . 0 1 4















.

Thus, Equation (12) can be written as

(21)
1

6
PUx =

1

2h
KU,

where U, Ux are the vectors corresponding to u, ux, respectively.
In the sequel, we shall also need the matrix representation of δ2

x. The matrix T , which corresponds to −h2δ2
x,

is the (N − 1) × (N − 1) symmetric matrix

(22) T =















2 −1 0 . . . 0
−1 2 −1 . . . 0
...

...
... . . .

...
0 . . . −1 2 −1
0 . . . 0 −1 2















.

The matrix P is related to T by

(23) P = 6I − T.

Therefore, the matrix which corresponds to the operator σx (restricted to l2h,0) is P/6 = I − T/6.

3.2. The eigenvalues and the eigenvectors of δ2
x. To simplify the notations, we assume from now on that

[a, b] = [0, 1], thus Nh = 1.
In order to prove the fourth-order accuracy of the scheme, we shall need the eigenvalues and eigenvectors

corresponding to δ2
x, and thus to the matrix T . The eigenvalues of T are

(24) λj = 4 sin2(
jπ

2N
), j = 1, · · · , N − 1

and the corresponding normalized eigenvectors are Zk = (Z1k, · · · , ZN−1,k)T (with respect to the Euclidean norm
in R

N−1 ), where

(25) Zjk =

(

2

N

)1/2

sin
kjπ

N
, 1 ≤ k, j ≤ N − 1.

We denote the column vectors as Zk ∈ R
N−1 and the row vectors as Zj ∈ R

N−1.
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The matrix Z = (Zjk)1≤j,k≤N−1 ∈ MN−1(R) is an orthogonal positive-definite matrix. Thus,

(26) Z2 = ZZT = IN−1.

It follows that the matrix T satisfies

(27) T = ZΛZT ,

where Λ = diag(λ1, · · · , λN−1). The normalized vectors (with respect to (| · |h ), which diagonalize the operator
−δ2

x, are the grid functions zk, which are defined by

(28) zjk = Zjk/h1/2.

Equivalently, they may be written as (noting that Nh = 1)

(29) zjk =
√

2 sin
kjπ

N
, 1 ≤ k, j ≤ N − 1.

We have

(30)







zjk =
√

2 sin(j kπ
N ), j = 1, · · · , N − 1, k = 1, ..., N − 1

z0k = 0, zNk = 0,

−δ2
xzk = λ̃kzk, λ̃k = 4

h2 sin2( kπ
2N ), k = 1, · · · , N − 1.

3.3. The accuracy of the Hermitian derivative. Now we state a lemma, proved in [3], which indicates the
fourth-order accuracy of the Hermitian derivative.

Lemma 1. Suppose that u(x) is a smooth function on [a, b] and let u = u∗. Then, the Hermitian derivative ux,
as obtained from the values u(xi), 0 ≤ i ≤ N by

(31) (σxux)i = (δxu∗)i, 1 ≤ i ≤ N − 1

and

(32) (ux)0 = (u′)∗(x0), (ux)N = (u′)∗(xN ),

has a truncation error ux − (u′)∗ of order O(h4). More precisely,

(33) |ux − (u′)∗|∞ ≤ Ch4‖u(5)‖L∞ .

4. The DBO and its truncation error

As mentioned in Section 2 the approximation δ4
xu∗

i , suggested in (16), may serve as approximation to u(4)(xi).
We refer to δ4

x as the discrete biharmonic operator (DBO). We define

Definition 2 (Discrete biharmonic operator (DBO)). Let u ∈ l2h be a given grid function. The discrete bihar-

monic operator is defined by

(34) δ4
xui =

12

h2
(δxux,i − δ2

xui), 1 ≤ i ≤ N − 1.

Here ux is the Hermitian derivative of u satisfying (12) with given boundary values ux,0 and ux,N .

Using (16) and (10), the solution of (1) may be approximated by the scheme

(35)



























(a) δ4
xui = f(xi) 1 ≤ i ≤ N − 1,

(b)
1

6
ux,i−1 +

2

3
ux,i +

1

6
ux,i+1 = δxui, 1 ≤ i ≤ N − 1,

(c) u0 = 0, uN = 0, ux,0 = 0, ux,N = 0.

The scheme in (35) is the one-dimensional restriction of the scheme proposed by Stephenson in [16]. In the
sequel, this scheme is referred to as the one-dimensional Stephenson Scheme to the biharmonic equation. Note
that it approximates both u and u′ at the grid points.

We first study in detail its truncation error. Let u(x) be a smooth function on [a, b], such that u(a) = u(b) = 0,
u′(a) = u′(b) = 0. We denote by u∗ its related grid function.
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We begin by considering the action of σxδ4
x at the interior point xi.

(36) σxδ4
xu∗

i =
1

6
δ4
xu∗

i−1 +
2

3
δ4
xu∗

i +
1

6
δ4
xu∗

i+1, 2 ≤ i ≤ N − 2,

where σx is the Simpson operator defined in (11). The right-hand side can be expressed as

(37)
12

h2

((

1

6
δxu∗

x,i−1 +
2

3
δxu∗

x,i +
1

6
δxu∗

x,i+1

)

−
(

1

6
δ2
xu∗

i−1 +
2

3
δ2
xu∗

i +
1

6
δ2
xu∗

i+1

))

.

Using the definition of u∗
x, the first term in this expression is

(38)

1
6δxu∗

x,i−1 + 2
3δxu∗

x,i + 1
6δxu∗

x,i+1 = σxδxu∗
x,i = δxσxu∗

x,i = δxδxu∗
i

= 1
4h2 (u∗

i+2 − 2u∗
i + u∗

i−2), 2 ≤ i ≤ N − 2.

The second term in (37) may be written as

(39)

1
6δ2

xu∗
i−1 + 2

3δ2
xu∗

i + 1
6δ2

xu∗
i+1

= 1
6h2 (u∗

i−2 + 2u∗
i−1 − 6u∗

i + 2u∗
i+1 + u∗

i+2), 2 ≤ i ≤ N − 2.

Therefore, inserting (38)-(39) in (36), we have

(40) σxδ4
xu∗

i =
1

h4
(u∗

i−2 − 4u∗
i−1 + 6u∗

i − 4u∗
i+1 + u∗

i+2) = δ2
xδ2

xu∗
i , 2 ≤ i ≤ N − 2.

Thus, in the absence of boundaries, there is a strong connection between δ4
x and (δ2

x)2. Explicit estimates for
σxδ4

xu∗
i at near boundary points x1, xN−1 are given below (see (42)). It results from this representation that

σxδ4
x actually coincides with the operator (δ2

x)2 at points xi, 2 ≤ i ≤ N − 2. Only at near boundary points,
i = 1, i = N − 1, we have a “numerical boundary layer” effect. Let us now investigate the accuracy of the DBO.

The following proposition deals with the truncation error of the DBO.

Proposition 3. Suppose that u(x) is a smooth function on [a, b]. Assume, in addition, that u(a) = u(b) = 0,
u′(a) = u′(b) = 0. Let u∗

i = u(xi), (u(4))∗(xi) = u(4)(xi) be the grid functions corresponding, respectively, to
u, u(4). Then the DBO δ4

x satisfies the following accuracy properties:
•
(41) |σxδ4

xu∗
i − σx(u(4))∗(xi)| ≤ Ch4‖u(8)‖L∞ , 2 ≤ i ≤ N − 2.

• At near boundary points i = 1 and i = N − 1, the fourth order accuracy of (41) drops to first order,

(42) |σxδ4
xu∗

1 − σx(u(4))∗(x1)| ≤ Ch‖u(5)‖L∞ ,

with a similar estimate for i = N − 1.
• The error in the energy norm is given by

(43) |δ4
xu∗ − (u(4))∗|h ≤ Ch3/2(‖u(5)‖L∞ + ‖u(8)‖L∞).

In the above estimates C is a generic constant, that does not depend on u.

Proof. According to (40), we have

(44) σxδ4
xu∗

i = (δ2
x)2u∗

i , i = 2, ..., N − 2.

We now expand (δ2
x)2 in Taylor series. We have

(45) δ2
xui = u′′(xi) +

h2

12
u(4)(xi) +

h4

360
u(6)(ξi), 1 ≤ i ≤ N − 1,

where ξi ∈ (xi − h, xi + h).
We note that for any smooth function v(x), x ∈ [a, b], we have for a + h < x < b − h

(46)
v(x + h) − 2v(x) + v(x − h)

h2
= v′′(η),

where η ∈ (x − h, x + h).
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Applying δ2
x to Equation (45) at the interior points xi, 2 ≤ i ≤ N − 2, we obtain

(47)

σxδ4
xu∗

i = (δ2
x)2u∗

i

= u(4)(xi) + h2

6 u(6)(xi) + pi, |pi| ≤ C1h
4‖u(8)‖L∞ , 2 ≤ i ≤ N − 2.

On the other hand, σx(u(4))∗(xi) may be expanded around xi, 2 ≤ i ≤ N − 2, as follows.

σx(u(4))∗(xi) = (I +
h2

6
δ2
x)(u(4))∗(xi)

= u(4)(xi) +
h2

6
u(6)(xi) + qi, |qi| ≤ C2h

4‖u(8)‖L∞ , 2 ≤ i ≤ N − 2.

Therefore, subtracting this equation from (47), we obtain the estimate (41).
Consider now the near boundary point x1. We set δ4

xu∗
0 = (u(4))∗(x0) and then, using the definition of σxδ4

x, we
have

(48)
σxδ4

xu∗
1 − σx(u(4))∗(x1) =

(

2

3
δ4
xu∗

1 +
1

6
δ4
xu∗

2

)

−
(

2

3
(u(4))(x1) +

1

6
(u(4))(x2)

)

=
2

3

(

δ4
xu∗

1 − (u(4))(x1)
)

+
1

6

(

δ4
xu∗

2 − (u(4))(x2)
)

.

First, we consider the terms evaluated at x1. Recall that

(49) δ4
xu∗

1 =
12

h2

(

(δxu∗
x)1 − δ2

xu∗
1

)

,

where u∗
x is the Hermitian derivative of u∗. Using the boundary values u∗

0 = u∗
x,0 = 0, we have, in view of (33),

(50) (δxu∗
x)1 =

u∗
x,2

2h
= u′′(x1) +

h2

6
u(4)(x1) + r1, |r1| ≤ Ch3‖u(5)‖L∞ ,

and

(51) δ2
xu∗

1 = u′′(x1) +
h2

12
u(4)(x1) + r2, |r2| ≤ Ch3‖u(5)‖L∞ .

Inserting the estimates (50), (51) in Equation (49), we obtain

(52) δ4
xu∗

1 = u(4)(x1) + r3, |r3| ≤ Ch‖u(5)‖L∞ .

Next, for x2 we have

(53) δ4
xu∗

2 =
12

h2

(

(δxu∗
x)2 − δ2

xu∗
2

)

.

Expanding on the term (δxu∗
x)2 and using again (33), we have

(54) (δxu∗
x)2 =

u∗
x,3 − u∗

x,1

2h
= u′′(x2) +

h2

6
u(4)(x2) + s1, |s1| ≤ Ch3‖u(5)‖L∞ .

For the second term δ2
xu∗

2 we have, as in (51),

(55) δ2
xu∗

2 = u′′(x2) +
h2

12
u(4)(x2) + s2, |s2| ≤ Ch3‖u(5)‖L∞ .

Inserting the estimates (54), (55) in Equation (53), we obtain, as in (52),

(56) δ4
xu∗

2 = u(4)(x2) + s3, |s3| ≤ Ch‖u(5)‖L∞ .

Combining the estimates for r3 and s3 and inserting them in (48), we obtain

(57) |σxδ4
xu∗

1 − σx(u(4))∗1| ≤ Ch‖u(5)‖L∞ ,

which proves (42).
(iii) Let ti = δ4

xu∗
i − (u(4))∗i be the truncation error for the fourth-order derivative approximation. We have

(58) σxt = v,

where v ∈ l2h,0 satisfies the estimates established in the previous parts of the lemma

(59) |v1|, |vN−1| ≤ Ch‖u(5)‖L∞ , |vi| ≤ Ch4‖u(8)‖L∞ , 2 ≤ i ≤ N − 2.
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The representative matrix of σx restricted to l2h,0 is P/6 = I − T/6. The eigenvalues of P/6 are

(60) 1 − 2

3
µk = 1 − 2

3
sin2

(

kπ

2N

)

.

The matrix norm of its inverse is

(61) |(P/6)−1|2 = max
k=1,...,N−1

∣

∣

∣

∣

1

1 − 2
3 sin2

(

kπ
2N

)

∣

∣

∣

∣

≤ 3.

From (58), (59) and (61), we obtain,

(62) |t|h ≤ C|v|h.

Finally, since

(63) |v|2h ≤ Ch(2h2 +

N−2
∑

i=2

h8)(‖u(5)‖2
L∞ + ‖u(8)‖2

L∞) ≤ Ch3(‖u(5)‖2
L∞ + ‖u(8)‖2

L∞),

we get (43). �

5. Optimal rate of convergence of the one-dimensional Stephenson scheme

In order to prove the fourth-order convergence of the scheme, we invoke the matrix representation fo the discrete
biharmonic operator.

5.1. Matrix representation of the DBO. We have shown in [4] that the matrix form of the DBO (see Definition
2) is obtained from the matrix form of operators u 7→ ux (see (21)), u 7→ δxu (see (18)) and u 7→ δ2

xu (see (22)).
Let U ∈ R

N−1 be the vector corresponding to the grid function u ∈ l2h,0.

Therefore, the matrix representation of u 7→ δ4
xu is

(64) SU =
12

h2

[

3

2h2
KP−1K +

1

h2
T

]

U =
6

h4

[

3KP−1K + 2T

]

U.

The fact that we deal with a boundary value problem, rather than a periodic one, means that PK − KP 6= 0.
However, the commutator is non-zero only at near-boundary points. Using the precise form of this commutator,
we get the following proposition.

Proposition 4. (i) The operator σxδ4
x has the matrix form

(65) PS =
6

h4
T 2 +

6

h4

[

e1(e1 + KP−1e1)
T + eN−1(eN−1 − KP−1eN−1)

T
]

,

where

(66) e1 = (1, 0, · · · , 0)T , eN−1 = (0, · · · , 0, 1)T .

(ii) The symmetric positive definite operator δ4
x (see (64)) has the matrix form

(67) S =
6

h4
P−1T 2 +

36

h4

(

V1V
T
1 + V2V

T
2

)

,

where the vectors V1, V2 are

(68)























V1 = (α − β)1/2P−1

(√
2

2
e1 −

√
2

2
eN−1

)

V2 = (α + β)1/2P−1

(√
2

2
e1 +

√
2

2
eN−1

)

.

The constants α, β are

(69)

{

α = 2(2 − eT
1 P−1e1)

β = 2eT
N−1P

−1e1.
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Remark 5. In view of the positivity of P−1, we have 0 ≤ eT
1 P−1e1 ≤ 1/2 and |eT

N−1P
−1e1| ≤ 1/2, so that

3 ≤ α ≤ 4 and |β| ≤ 1. Thus, (α ± β)1/2 are well defined.

5.2. Error estimate for the one-dimensional Stephenson scheme. In [3] we carried out an error analysis
based on the coercivity of δ4

x. The analysis presented there was based on an energy (l2) method and led to a

”sub-optimal” convergence rate of h
3

2 . In [10] we have improved this result by showing that the convergence rate
is almost three (the error is bounded by Ch3 log(|h|). Here we prove the optimal (fourth-order) convergence of the
scheme.

In order to obtain an optimal convergence rate, we use the matrix structure of δ4
x given in (67). Let u be the

exact solution of (1) and let u be its approximation by the Stephenson scheme (35). Let u∗ be the grid function
corresponding to u. We consider the error between the approximated solution u and the collocated exact solution
u∗,

e = u − u∗,

The grid function u∗ satisfies

(70) δ4
xu∗

i = f∗(xi) + ri, 1 ≤ i ≤ N − 1,

where r is by definition the truncation error. We later refer to Proposition 3 for estimates on r.
The error e = u − u∗ satisfies

(71)
δ4
xei = −ri, 1 ≤ i ≤ N − 1,

e0 = 0, eN = 0, ex,0 = 0, ex,N = 0.

We prove the following error estimate.

Theorem 6. Let u be the exact solution of (1) and assume that u has continuous derivatives up to order eight
on [a, b]. Let u be the approximation to u, given by the Stephenson scheme (35). Let u∗ be the grid function
corresponding to u. The, the error e = u − u∗ satisfies

(72) |e|h ≤ Ch4,

where C depends only on f .

Proof. Let U, U∗ ∈ R
N−1 be the vectors corresponding to u, u∗, respectively, and let F be the vector corresponding

to f∗. We denote by E = U − U∗ and R the vectors corresponding to e = u − u∗ and r, respectively.
Using the matrix representation (67), we can write Equations (1) and (70) in the form

(73) SU = F,

and

(74) SU∗ = F + R.

We therefore have

(75) SE = −R.

In view of (67) we have that

(76) PSP =
6

h4
T 2P +

36

h4
JJT ,

where

(77) J =

√
2

2
[(α − β)1/2(e1 − eN−1), (α + β)1/2(e1 + eN−1)].

Inverting PSP and multiplying by PR, we have

(78) −P−1E = P−1S−1R = (PSP )−1PR.

Our goal is to bound the elements of P−1E by Ch4. Note that by Proposition 3 we have

(79)
|(PR)1|, |(PR)N−1| ≤ Ch,
|(PR)j | ≤ Ch4, 2 ≤ j ≤ N − 2.

Thus, we need to estimate (PSP )−1PR. We decompose PSP as follows

(80) PSP = GH−1,
9



where

(81) G = I + 6JJT P−1T−2, H =
h4

6
P−1T−2,

so that

(82) (PSP )−1 = HG−1.

Note that with L = (6/h4)H, Q = 6JJT , we have

(83) G = I + QL.

We first estimate the elements of the matrix H .

Estimate of the elements of H.

In what follows we use C as expressing various constants that do not depend on h. As in (27), we can diagonalize
H by

H = ZΛ′ZT ,

where the j-th column of the matrix Z is Zj, as defined in (25). Recall that P = 6I − T (see (23)), and that the
eigenvalues λj of T are given by (24). Therefore, the eigenvalues κj , 1 ≤ j ≤ N − 1 of P are given by

(84) κj = 6 − λj = 6 − 4 sin2(
jπ

2N
), 1 ≤ j ≤ N − 1.

The diagonal matrix Λ′ contains the eigenvalues of H , which can be written as

θj =
h4

6
λ−2

j κ−1
j =

h4

96

1

sin4( jπ
2N )(6 − 4 sin2( jπ

2N ))
, j = 1, · · · , N − 1.

The element Hi,k of the matrix H is

Hi,k =

N−1
∑

j=1

Zi,jθjZj,k.

(85) Hi,k =

N−1
∑

j=1

h4

96

2

N
sin(

ijπ

N
)

sin( jkπ
N )

sin4( jπ
2N )(6 − 4 sin2( jπ

2N ))
.

We can now estimate the order of magnitude of the elements of H as functions of h. In fact, we shall inspect
separately the first and last columns of H and the rest (k = 2, ..., N − 2). The reason is that writing

(86) (HG−1PR)i =
N−1
∑

k=1

Hi,k(G−1PR)k,

we shall see that (G−1PR)1, (G−1PR)N−1 can only be estimated by Ch2 (see (112) below), so that the additional
accuracy should come from Hi,1, Hi,N−1. Consider first the elements (i, k) of H for k = 1, N − 1. It suffices to
consider k = 1.

(87) Hi,1 =

N−1
∑

j=1

h4

96

2

N
sin(

ijπ

N
)

1

sin4( jπ
2N )(6 − 4 sin2( jπ

2N ))
sin(

jπ

N
).

Recall the elementary inequalities

(88) sin x ≥ 2

π
x, 0 ≤ x ≤ π

2
,

(89) | sin x| ≤ |x|, 2 ≤ 6 − 4 sin2(
jπ

2N
) ≤ 6.

Noting that h = 1/N and using the estimate | sin( ijπ
N )| ≤ 1, we obtain

(90) |Hi,1| = |H1,i| ≤ C

N−1
∑

j=1

h5 1

(jh)4
(jh) ≤ Ch2, i = 2, ..., N − 2.
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Similarly, we have

(91) C1h
3 ≤ H1,1 ≤ C

N−1
∑

j=1

h5 1

(jh)4
(jh)2 ≤ C2h

3.

This estimate holds equally for HN−1,N−1. For the other corner elements of H we have

(92) |H1,N−1| = |HN−1,1| ≤ C2h
3.

For i, k = 2, ..., N − 2 we have

(93) |Hi,k| ≤ C

N−1
∑

j=1

h5 1

(jh)4
≤ Ch.

Therefore, the orders of magnitude of the elements of H are bounded by

(94)















Ch3 Ch2 . . . Ch2 Ch3

Ch2 Ch . . . Ch Ch2

...
... . . . . . .

...
Ch2 Ch . . . Ch Ch2

Ch3 Ch2 . . . Ch2 Ch3















.

Estimate of the elements of G−1.

We show that G is invertible and we estimate its elements. First note that the elements of L are the elements
of H multiplied by 6/h4.

The matrix Q is (N − 1) × (N − 1), but it has only four non-zero components at the corner positions,

(95) Q1,1 = QN−1,N−1 = 6α, Q1,N−1 = QN−1,1 = 6β.

Therefore, QL has only two non-zero rows - the first and the last. The first row is given by

(QL)1,j = 6(αL1,j + βLN−1,j), j = 1, ..., N − 1

and the last row is given by

(QL)N−1,j = 6(βL1,j + αLN−1,j), j = 1, ...N − 1.

Thus,

(96)







G1,1 = 1 + 6(αL1,1 + βLN−1,1) =: a1,
G1,N−1 = 6(αL1,N−1 + βLN−1,N−1) =: aN−1,
G1,j = 6(αL1,j + βLN−1,j) =: bj, j = 2, ..., N − 2

and

(97)







GN−1,1 = 6(βL1,1 + αLN−1,1) = G1,N−1 = aN−1,
GN−1,N−1 = 1 + 6(βL1,N−1 + αLN−1,N−1) = G1,1 = a1,
GN−1,j = 6(βL1,j + αLN−1,j) = bN−j, j = 2, ..., N − 2,

where the symmetries of L have been used. In rows 2, 3, ..., N−2 the matrix G has 1 on the diagonal and otherwise
it is zero.

The orders of magnitude of a1, aN−1 and bj (2 ≤ j ≤ N − 2) follow from those of the elements of L. Namely,
|a1|, |aN−1| ≤ C/h and |bj| ≤ C/h2 for j = 2, ..., N − 2. In what follows we shall need lower bounds for
a1 and a2

1 − a2
N−1. From their definitions above it is seen that we need an inspection of the terms L1,1 =

(6/h4)H1,1, L1,N−1 = (6/h4)H1,N−1. Using the definitions of L1,1, and L1,N−1, we obtain

(98)

L1,1 > |L1,N−1|
L1,1 ∓ L1,N−1 = h

4

∑N−1
j=1

j even or odd

sin2 jπ

N

sin4 jπ

2N
(6−4 sin2 jπ

2N
)

≥ Ch
∑N−1

j=1
j even or odd

(jh)2

(jh)4 = C
h .

In the above, take ”j = even” for ”−” and ”j = odd” for ”+”.
11



Using (96) and the bounds 3 ≤ α ≤ 4, |β| ≤ 1 (Remark 5), we get in view of (98) and (91)

(99) |a1| ≥ 6(3L1,1 − |LN−1,1|) − 1 ≥ 12L1,1 − 1 ≥ C

h
.

Next, we treat the difference a2
1 − a2

N−1. Since we have the upper bound |a2
1 − a2

N−1| ≤ C1/h2, we again need

only a lower bound. We write the difference a2
1 − a2

N−1 as

(100) a2
1 − a2

N−1 = [1 + 6(α + β)(L1,1 + L1,N−1)] · [1 + 6(α − β)(L1,1 − L1,N−1)]

(using the symmetries of L). In view of (98) and α ≥ 3 , |β| ≤ 1, we obtain

(101) |a2
1 − a2

N−1| ≥ C2/h2.

To compute the inverse of G, we apply Gaussian elimination using the following method. We perform operations
on rows of G and apply the same operations to the identity matrix I. When G is transformed to the identity matrix,
I is transformed to G−1.

We first divide the first and the last row of G by a1 and annihilate the terms j = 2, ..., N − 2 of both rows by
subtracting suitable multiplies of rows 2, ..., N −2. add the result to the first row, for j = 2, 3, ..., N −2. The result
is G1, where

(102) G1 =



















1 0 0 . . . 0 0 aN−1

a1

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0

aN−1

a1
0 0 . . . 0 0 1



















.

The same operations on the identity matrix yield the matrix

(103) I1 =





















1
a1

−b2
a1

−b3
a1

. . . −bN−3

a1

−bN−2

a1

0

0 1 −0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0

0 −bN−2

a1

−bN−3

a1

. . . −b3
a1

−b2
a1

1
a1





















.

In order to eliminate the non-zero element of G1 in position (N − 1, 1), we subtract a suitable multiple of the first
row and add the result to the last row, thus getting the transformed matrix G2

(104) G2 =





















1 0 0 . . . 0 0 aN−1

a1

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0

0 0 0 . . . 0 0
a2

1
−a2

N−1

a2

1





















.

The corresponding matrix I2 (obtained similarly from I1) is

(105)

I2 =





















1
a1

−b2
a1

−b3
a1

. . . −bN−3

a1

−bN−2

a1

0

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0

−aN−1

a2

1

b2aN−1−a1bN−2

a2

1

b3aN−1−a1bN−3

a2

1

. . . bN−3aN−1−a1b3
a2

1

bN−2aN−1−a1b2
a2

1

1
a1





















.
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Now we divide the last row of G2 and I2 by
a2

1
−a2

N−1

a2

1

. We get

(106) G3 =



















1 0 0 . . . 0 0 aN−1

a1

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1



















and

(107)

I3 =





















1
a1

−b2
a1

−b3
a1

. . . −bN−3

a1

−bN−2

a1
0

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0

−aN−1

a2

1
−a2

N−1

b2aN−1−a1bN−2

a2

1
−a2

N−1

b3aN−1−a1bN−3

a2

1
−a2

N−1

. . . bN−3aN−1−a1b3
a2

1
−a2

N−1

bN−2aN−1−a1b2
a2

1
−a2

N−1

a1

a2

1
−a2

N−1





















.

Finally, we eliminate the (1, N − 1) element in G3 by subtracting a multiple of the last row. The corresponding
operation on I3 yields the inverse G−1 as

(108)

G−1 =





















a1

a2

1
−a2

N−1

aN−1bN−2−a1b2
a2

1
−a2

N−1

aN−1bN−3−a1b3
a2

1
−a2

N−1

. . . aN−1b3−a1bN−3

a2

1
−a2

N−1

aN−1b2−a1bN−2

a2

1
−a2

N−1

−aN−1

a2

1
−a2

N−1

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0

−aN−1

a2

1
−a2

N−1

aN−1b2−a1bN−2

a2

1
−a2

N−1

aN−1b3−a1bN−3

a2

1
−a2

N−1

. . . aN−1bN−3−a1b3
a2

1
−a2

N−1

aN−1bN−2−a1b2
a2

1
−a2

N−1

a1

a2

1
−a2

N−1





















.

We give accurate estimates for the non-trivial elements of G−1, those in the first and last rows. Using (99),
(101) and the corresponding upper bounds, one readily observes that

(109) |(G−1)1,1|, |(G−1)N−1,N−1|, |(G−1)N−1,1| |(G−1)1,N−1| ≤ Ch.

Similarly, and using also |bj| ≤ C/h2, we get

(110) |(G−1)1,j |), |(G−1)N−1,j | ≤
C

h
, j = 2, ..., N − 2.

Therefore, the elements of G−1 are bounded by

(111)

G−1 =



















Ch C/h C/h . . . C/h C/h Ch
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . . . . . . .

...
0 0 0 . . . 0 1 0

Ch C/h C/h . . . C/h C/h Ch



















.
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We can now bound the elements of G−1PR using (109)- (110) and (79).

(112)

|(G−1PR)1| ≤
∑N−1

k=1 |(G−1)1,k| · |(PR)k|

= |(G−1)1,1| · |(PR)1| +
∑N−2

k=2 |(G−1)1,k| · |(PR)k|+
+|(G−1)1,N−1| · |(PR)N−1|

≤ C1h · h + C2(N − 3)(1/h) · h4 ≤ Ch2.

Similarly, we have that |(G−1PR)N−1| ≤ Ch2.
For i = 2, ..., N − 2

(113) |(G−1PR)i| = |(PR)i| ≤ Ch4.

Finally we consider the product HG−1PR (see (78), (82))

(114) −P−1E = HG−1PR.

Combining the estimates (90)-(93) with (112)-(113), we obtain

(115)

|(HG−1PR)i| ≤
∑N−1

k=1 |Hi,k| · |(G−1PR)k|

= |Hi,1| · |(G−1PR)1| +
∑N−2

k=2 |Hi,k| · |(G−1PR)k| + |Hi,N−1| · |(G−1PR)N−1|

≤ C1h
2h2 + C2(N − 3)hh4 ≤ Ch4.

Therefore,

(116) |(P−1E)i| = |(HG−1PR)i| ≤ Ch4, 1 ≤ i ≤ N − 1.

Conclusion of the proof of Theorem 6. Using (116) we obtain that the Euclidean norm of the vector
E = U − U∗ satisfies the estimate

(117) |E| = |PP−1E| ≤ C|P−1E|
(116)

≤ C
√

∑N−1
i=1 (h4)2 = Ch−1/2h4.

Thus, in view of the definition of the l2 norm

(118) |e|h ≤ Ch4.

This proves the fourth order error estimate result. �

6. Numerical results

In order to assess the spatial fourth-order accuracy of the scheme, we performed several numerical tests. In the
tables below we show emax - the error in the maximum norm, and e2 - the error in the l2 norm.

emax = max |ucomp − uexact|,
e2 = ‖ucomp − uexact‖l2 = |ucomp − uexact|h.

Here, ucomp and uexact are the computed and the exact solutions, respectively.
We illustrate the numerical properties of the scheme (35) as follows.

• The scheme (35) is observed to be fourth-order accurate in the maximum and the discrete l2 norms,
whenever homogeneous or nonhomogeneous boundary conditions are applied. This is shown in Case 1.

• In case of highly oscillatory solutions, the scheme (35) behaves remarkably well. Case 2 describes the
convergence of the scheme for such a family of solutions. In this case too fourth-order accuracy is observed.
In addition, the magnitude of the errors is very small even for coarse grids.

• Finally, in Case 3 we show that the scheme can be also used for nonlinear biharmonic equations, retaining
the fourth-order accuracy.

6.1. Case 1 : Polynomial solutions. We consider two polynomial solutions. The first corresponds to homoge-
neous boundary conditions and the second to inhomogeneous conditions.
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6.1.1. Homogeneous boundary conditions. Consider the polynomial solution of u(4) = f

u(x) = x4(x − 1)2 on [a, b] = [0, 1].

It satisfies

(119) u(0) = u′(0) = u(1) = u′(1) = 0.

Thus, choosing

(120) f(x) = u(4) = 360x2 − 240x + 24,

then u(x) is the unique solution of the biharmonic problem

(121)







u(4) = f, 0 < x < 1,
u(0) = u(1) = 0,
u′(0) = u′(1) = 0.

Our objective is to recover approximations ui of u(xi) from the knowledge of the discrete data f(xi) on the grid
0 = x0 < x1 < . . . < xN−1 < xN = 1. The problem (121) is approximated by

(122)







δ4
xuj = f(xj), 1 ≤ j ≤ N − 1,

u0 = uN = 0,
ux,0 = ux,N = 0.

In Table 1 we display numerical results for the fourth-order scheme (122). Observe that fourth-order accuracy
is achieved in both the maximum and the l2 norms.

Mesh N = 16 Rate N = 32 Rate N = 64 Rate N = 128
emax 7.8231(-6) 4.00 4.8894(-7) 4.00 3.0589(-8) 4.00 1.9106(-9)
e2 5.6157(-6) 4.00 3.5099(-7) 4.00 2.1937(-8) 4.00 1.3739(-9)

Table 1. Compact scheme for u(4) = f with exact solution: u = x4(x− 1)2 on [0, 1]. We present
emax the error in the maximum norm, and e2 the error in the l2 norm.

6.1.2. Nonhomogeneous boundary conditions. Here we consider a polynomial solution, but with nonhomogeneous
values at the two end points,

u(x) = x5, on [a, b] = [0, 1].

The function u(x) is the solution of the biharmonic problem

(123)







u(4) = f, 0 < x < 1,
u(0) = 0, u(1) = 1,
u′(0) = 0, u′(1) = 5,

where the function f(x) is

(124) f(x) = u(4) = 120x.

Thus, we resolve numerically

(125)







δ4
xuj = f(xj), 1 ≤ j ≤ N − 1,

u0 = 0, uN = 1,
ux,0 = 0, ux,N = 5.

Our purpose is to demonstrate the fourth-order accuracy of the scheme for the case of nonhomogeneous boundary
conditions. Indeed, the numerical results reported in Table 2 assesses the fourth-order accuracy of the scheme in
this case too.
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Mesh N = 16 Rate N = 32 Rate N = 64 Rate N = 128
emax 9.6857(-7) 3.99 6.1118(-8) 4.00 3.8200(-9) 3.98 2.4129(-10 )
e2 7.0187(-7) 4.00 4.3873(-8) 4.00 2.7420(-9) 4.00 1.7062(-10 )

Table 2. Compact scheme for u(4) = f with exact solution: u = x5 on [0, 1]. We present emax

the error in the maximum norm, and e2 the error in the l2 norm.

6.2. Case 2: Oscillating solutions. We consider a family of functions defined by

(126) uε(x) = p(x) sin
(

1/qε(x)
)

,

where the polynomial functions p(x) and qε(x) are given by

(127) p(x) = 16x2(1 − x)2, qε(x) = 1/
(

(x − 1/2)2 + ε
)

, ε > 0.

For small ε the function uǫ oscillates in the middle of the interval. The parameter ε serves as a tuning parameter
for the frequency of the oscillations.

In Figure 1 we display the functions uε(x) corresponding to

(128) ε = 7.510−2, ε = 5.010−2, ε = 2.510−2.

As in Case 1, we consider the approximation
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Figure 1. The oscillating function x 7→ 16x2(1−x)2 sin(1/((x− 0.5)2 + ε) for ε = 7.5 10−2 (left),
ε = 5.0 10−2 (center), ε = 2.5 10−2 (right) .

(129)







δ4
xuj = fε(xj), 1 ≤ j ≤ N − 1,

u0 = 0, uN = 0,
ux,0 = 0, ux,N = 0,

where the function fε(x) is defined by

(130) fε(x) = u(4)
ε (x).

The results are reported in Figure 2 on a LogLog scale. In addition, in Table 3 we display the errors for different
values of ε and N . The results clearly demonstrate the asymptotic fourth-order convergence in both norms. The
magnitude of the errors on relatively coarse grids is remarkably small. Observe that a maximum error of order
10−3 is obtained for ε = 7.5 10−2, ε = 5.0 10−2 and ε = 2.5 10−2 with N = 32, N = 64 and N = 128, respectively.

6.3. Case 3: A nonlinear biharmonic equation. As a final example we consider the nonlinear problem

(131)







u(4) − H(u) = f, 0 < x < 1,
u(0) = 0, u(1) = 0,
u′(0) = 0, u′(1) = 0,

where H is assumed to be a k-lipschitz function.
16
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Figure 2. Convergence rates for the problem (129) with ε = 7.5 10−2 (left), ε = 5.0 10−2 (center),
ε = 2.5 10−2 (right). Circles correspond to the maximum norm and squares correspond to the l2

norm.

Mesh N = 16 Rate N = 32 Rate N = 64 Rate N = 128 Rate N = 256 Rate N = 512

emax, ε = 7.5 10−2 7.3136(+0) 11.67 2.2523(-3) 4.62 9.1729(-5) 4.09 5.3870-6) 4.02 3.3124(-7) 4.01 2.0501(-8)

ε = 5.0 10−2 2.7999(+3) 14.45 1.2469(-1) 6.72 1.1839(-3) 4.27 6.1165(-5) 4.06 3.6542(-6) 4.04 2.2279(-7)

ε = 2.5 10−2 2.9713(+5) 0.26 2.4744(+5) 18.75 5.6056(-1) 6.75 5.1981(-3) 4.44 2.3902(-4) 4.04 1.4556(-6)

e2, ε = 7.5 10−2 4.7042(0) 12.34 9.0697(-4) 4.45 4.1464(-5) 4.11 2.4066(-6) 4.03 1.4768(-7) 4.03 9.0506(-9)

ε = 5.0 10−2 1.7151(+3) 14.97 5.3507(-2) 7.06 3.9973(-4) 4.28 2.0575(-5) 4.07 1.2252(-6) 4.02 7.5503(-8)

ε = 2.5 10−2 1.8588(+5) 0.27 1.5403(+5) 19.46 2.1295(-1) 7.25 1.3947(-3) 4.41 6.5468(-5) 4.11 3.8041(-6)

Table 3. Compact scheme for u(4) = fε for ε = 7.5 10−2, ε = 5.0 10−2, ε = 2.5 10−2. We present
emax the error in the maximum norm, and e2 the error in the l2 norm.

The approximation of(131) is obtained via the (nonlinear) scheme

(132)







δ4
xuj − H(uj) = f(xj), 1 ≤ j ≤ N − 1,

u0 = 0, uN = 0,
ux,0 = 0, ux,N = 0.

Equation (131) has a unique solution under the sufficient condition

(133) k < λmin,

where λmin is the smallest eigenvalue of the problem

(134)







u(4) = λu,
u(0) = 0, u(1) = 0,
u′(0) = 0, u′(1) = 0.

A sufficient condition for (133) to hold is that

(135) k <

(

3π

4

)4

.

In Table 4 we display numerical results for the function H(u) = 100 sin2 u. Here the right-hand side f is selected

as u
(4)
ε − H(u), with ε = 5.0 10−2 (see Case 2). Observe the fourth-order accuracy of the scheme.

Mesh N = 64 Rate N = 128 Rate N = 256 Rate N = 512
emax 1.2391(-3) 4.27 6.4175(-5) 4.06 3.8378(-6) 4.04 2.3401(-7)
e2 4.0399(-4) 4.28 2.0839(-5) 4.07 1.2417(-6) 4.03 7.6153(-8)

Table 4. Compact scheme for u(4) − 100 sin2 u = f with exact solution: u = uε(x) on [0, 1], with
ε = 5.0 10−2. We present emax the error in the maximum norm, and e2 the error in the l2 norm.
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