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Abstract. The cubed-sphere grid is a spherical grid made of six quasi-cartesian square-like patches.
It was originally introduced in [21]. We extend to this grid the design of high-order �nite-di�erence
compact operators [4, 11]. The present work is limitated to the design of a fourth-order accurate
spherical gradient. The treatment at the interface of the six patches relies on a speci�c interpolation
system which is based on using great circles in an essential way. The main interest of the approach
is a fully symmetric treatment of the sphere. We numerically demonstrate the accuracy of the
approximate gradient on several test problems, including the cosine-bell test-case of Williamson et

al. [27] and a deformational test-case reported in [13].
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1. Introduction

Representing discrete data on the surface of a sphere is an important topic for the numerical
simulation of many problems in physics. Several spherical grids have been investigated, the most
classical being the longitude-latitude grid, which is particularly famous in climatology. Here we focus
on the cubed-sphere grid, originally introduced in [21].

Recently this grid regained interest for numerical simulations [19]. It is now widely used for
di�erent applications. In climatology it is used with various kinds of spatial approximation of the
shallow-water system on the rotating earth. For example in [20, 16, 26] the �nite-volume method is
used (one unknown by cell). In [25] the cubed-sphere is used with the Spectral-Element method. In
[14, 12, 10] the Discontinuous Galerkin approach is preferred. The cubed-sphere is also used for other
applications. An analysis of the earth gravitational �eld is performed in [8]. In cosmology, black holes
dynamics is studied in [5].

In this paper we focus on calculating a high-order accurate approximate gradient on the cubed-
sphere. Speci�cally suppose given pointwise values of a grid function on the cubed-sphere, then we
want to evaluate a high-order approximation to the spherical gradient (in the �nite di�erence sense)
at the same grid points. The main properties of our discrete gradient are:

• The data are supposed to be classical ��nite-di�erence� values ui,j located on the six faces of
the cubed-sphere.

• We take advantage of the fact that the coordinate lines of the cubed-sphere are sections of
great circles. The �rst step of the algorithm consists in calculating �nite di�erence hermitian
derivatives along these great circles.

• In a second step an approximate value of the spherical gradient is deduced on each patch of
the cubed-sphere. It is numerically observed to be uniformly fourth-order accurate.
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Figure 1. The cubed-sphere grid with N = 16 (left) and N = 32 (right).

Figure 2. Topology of the six patches of the cubed-sphere grid. The number (I),
(II), (III), (IV ), (V ), (V I) correspond to the faces Front (F), East(E), Back (B),
West (W), North (N) and South (S).

The outline of the paper is as follows. In Section 2, we brie�y recall the two main ingredients of the
study: the geometric setting of the cubed-sphere grid and the hermitian derivative of a grid function.
Section 3 is devoted to our interpolation procedure to de�ne a uniformly fourth-order discrete spherical
gradient on the cubed-sphere. Finally in Section 4 we numerically demonstrate the practical accuracy
of our approximate gradient on several test-cases. First we show on two spherical advective test-cases
[27, 13] that a centered scheme gives accurate and stable results, in a similar fashion to wave problems
in aeroacoustics [24, 6, 3]. Second we show how to deduce an approximation to the spherical Laplacian
and this approximation is further used on a discrete eigenvalue problem.

2. Background on the cubed-sphere grid and hermitian derivatives

Two main ingredients are used in the sequel. First in Section 2.1 we recall some geometric back-
ground useful to de�ne the cubed-sphere. Then in Section 2.2 the principle of calculation of fourth-
order hermitian derivatives on an irregular one-dimensional grid is described.

2.1. The cubed-sphere grid. We consider a sphere of radius 1 centered at the origin O inscribed in
the cube with same center and edge length 2. The reference cartesian frame is (O, i, j,k). The direc-
tions of the unit vectors i, j and k are associated with directions Front, East and North, respectively
[19]. The cubed-sphere grid is made of six identical patches, denoted by Front (I), East (II), Back
(III), West (IV), North (V), and South (VI), (Fig.2). The notation of the patches is indi�erently:
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the full name, letter notation F, B, E, W, N, S or number notation I, II, III, IV, V, VI. A natural
reference frame on each patch is the equiangular coordinate system. It consists into the equatorial
angle ξ and the latitudinal angle η with origin at the center of the patch. We thus have six coordinate
systems denoted by

(1) (ξF , ηF ), (ξB , ηB), (ξE , ηE), (ξW , ηW ), (ξN , ηN ), (ξS , ηS).

We simply note (ξ, η) whenever there is no ambiguity. The angles (ξ, η) are such that

(2) −π
4
≤ ξ, η ≤ π

4
.

Let N be the size parameter of the discretization. We consider on each patch a regular cartesian grid
in the local (ξ, η) system

(3) (ξ = i∆ξ, ηj = j∆η), −M = −N/2 ≤ i, j ≤M = N/2

The parameters ∆ξ , ∆η are de�ned by

(4) ∆ξ =
π

2N
, ∆η =

π

2N
.

The cubed-sphere grid is then obtained by mapping onto the sphere each point of these six cartesian
grids by the central projection of center O.

Each of the six patches on the cubed-sphere thus consists of N2 cells having a squared shape.
Summing up the number of points in the six patches gives 6(N + 1)2 points. However 12(N − 1)
points are counted twice along the interfaces between the patches and 8 points are counted three
times (the vertices of the cube), thus giving an e�ective grid size of 6N2 + 2 points.

Some analytical formulas useful to perform the change of variable are given in the Appendix in
Section 6. See also [19, 10, 26].

2.2. Hermitian derivatives in one dimension. In this section we recall the principle of calculation
of the hermitian gradient in one dimension.

Consider �rst the design of the fourth-order hermitian derivative on a regular grid of the interval
Ω̄ = [0, 1]. The discrete points are denoted by 0 = t0 < t1 = h < t2 = 2h < . . . tN−1 = (N − 1)h <
tN = 1. Suppose given periodic data uj at tj , (uN = u0). The hermitian compact operator j 7→ ut,j

approximating u′(tj) is de�ned by the linear system

(5)
1
6
ut,j−1 +

2
3
ut,j +

1
6
ut,j+1 =

uj+1 − uj−1

2h
, σN+j = σj , 0 ≤ j ≤ N − 1.

The hermitian derivative ut,j is fourth-order accurate at tj in the �nite di�erence sense, with a
truncation error

(6) ut,j = u′(tj)−
h4

180
u(5)(tj) +O(h6), 0 ≤ j ≤ N − 1.

We refer to the classical references [4, 11], and to [1] for a detailed numerical analysis.
Consider now the case of an irregular periodic grid on Ω = [a, b] given by xj , 0 ≤ j ≤ N − 1.

The values xj are in increasing order. The function ϕ is selected such that xj = ϕ(tj). The grid
tj = j∆t is a regular discretisation of the reference interval Ω̄ = [0, 1]. The chain-rule at point tj can
be written as

(7) u′(ϕ(t)) =
(u ◦ ϕ)′(t)
ϕ′(t)

, 0 < t < 1.

According to (7) the hermitian derivative at xj is de�ned by

(8) ūx,j =
(u ◦ ϕ)t,j

ϕt,j
, 0 ≤ j ≤ N − 1.
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where ϕt,j (respectively (u ◦ ϕ)t,j) is the hermitian derivatives of ϕ(t) (respectively (u ◦ ϕ)(t)) at
tj . In the case where ϕ(t) is the cubic spline interpolating the values xj , then it is easily seen that
ϕt,j = ϕ′(tj). Thus (u ◦ ϕ)t,j and ϕt,j are fourth-order accurate approximations of (u ◦ ϕ)′(tj) and
x′(tj), respectively. As a consequence, ūx,j is a fourth-order approximation of u′(xj).

The calculation proceeds as follows. De�ne the periodic matrices P,K ∈ MN (R),

(9) P =


4 1 0 . . . 1
1 4 1 . . . 0
...

...
... . . .

...
0 . . . 1 4 1
1 . . . 0 1 4

 .
and

(10) K =


0 1 0 . . . −1
−1 0 1 . . . 0
...

...
... . . .

...
0 . . . −1 0 1
1 . . . 0 −1 0

 .
Let [u], [x] ∈ RN be the vector data corresponding to (uj)0≤k≤N−1 and (xj)0≤j≤N−1, respectively.

Then the vectors [ux], [xt] ∈ RN are solutions of

(11) P [ut] = 3K[u], P [xt] = 3K[x].

The vector of the hermitian derivative [ūx] is deduced componentwise by

(12) ūx,j =
ut,j

xt,j
, 0 ≤ k ≤ N − 1.

3. Hermitian gradient on the cubed-sphere

3.1. Isocoordinate systems of great circles. Our starting point in the observation that the co-
ordinate lines η = cste, ξ = cste of each patch are great circle sections. Consider �rst an iso-η line of
patch Front. We call α the curvilinear absissa along this coordinate line with eastward orientation.
The angle α is such that

(13) −α0(η) < α < α0(η), α0(η) = atan

(√
2 tan η

2

)
.

As the angle α increases, the coordinate line extends to a full great circle going across the patches
East, Back, and West in this order. Fig. 3 displays the four patches E,W,B,W in local (ξ, η)
coordinates together with the great circle coordinate line ηF = ηF

0 . On the East patch it crosses the
grid along a set of points Mk with local coordinates (ξE

k = k∆ξ, ηE
k ), 0 ≤ k ≤ N . Then it matches

on patch Back the coordinate line ηB = π
2 − η

F
0 . Again on the West patch it crosses the grid along a

set of points with local coordinates (ξW
k = k∆ξ, ηW

k ), 0 ≤ k ≤ N .
In a similar fashion we consider all the great circles de�ned as iso-ξ coordinate lines of face Front.

These great circles are parametrized by the angle β, which is the curvilinear abscissa along them.
The other �ve patches E,B,W,N, S are treated in the same way. However due to the aforemen-

tionned match between patches Front/Back, East/West, North/South, respectively, it turns out that
six sets of such coordinate based great circles are su�cient to cover the cubed-sphere. We de�ne
these six sets as follows:

(1) The two sets (Iα) and (Iβ) are based on patch Front. They are de�ned by the iso-η lines and
iso-ξ lines, respectively. They match the iso-η lines and iso-ξ-lines on patch Back, respectively.
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Figure 3. Representation of a great circle of the set (Iα). It coincides with the
coordinate line η = η0 of patch Front (top left). Then it crosses the patch East
(top right) along a set of points (ξE

i , η
E
i ). Then (bottom left) it coincides with the

coordinate line η = π−η0 on patch Back. Finally (bottom right) it crosses the patch
West.

Figure 4. The set (Iα) of great circles corresponding to the iso-η coordinate lines
of patch F . The great circles are plotted with the 'o' symbol. They all cross the
East patch at the center point E. The displayed grid corresponds to N = 16 with
1538 points. Left: view of the Front Face. Right: view of the East Face.

(2) The two sets (IIα) and (IIβ) are based on patch East. They are de�ned by the iso-η lines and
iso-ξ lines, respectively. They match the iso-η lines and iso-ξ lines of patch West, respectively.

(3) The two sets (Vα) and (Vβ) are based on patch North. They are de�ned by the iso-η lines and
iso-ξ lines, respectively. They match the iso-η lines and iso-ξ lines of patch South, respectively.

The set (Iα) is represented on Fig. 4. As already mentionned we adopt as a generic notation α
for the angle (curvilinear abscissa) for the circles of the sets (Iα), (IIα), (Vα). Similarly we call β the
angle for the sets (Iβ), (IIβ), (Vβ).

3.2. Hermitian derivatives along great circles. As explained above the coordinate lines of each
of the six patches are sections of great circles. This property is the basis of the calculation of our
approximate gradient at each grid point.
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Suppose given data uk
i,j , −M ≤ i, j ≤ M at the coordinate points of each of the six patches

k = I, II, III, IV, V, V I . The computation procedure of the high-order gradient can be summarized
in the two following steps:

(1) Compute the Hermitian derivatives along the six sets of great circles (Iα), (Iβ), (IIα), (IIβ),
(Vα), (Vβ) according to formula (8) and (12).

(2) Deduce the gradient at each point of the six patches using an appropriate change of variables.

Concerning the �rst step we limit ourselves to describe how the hermitian derivative along the circles
of the set (Iα) is approximated.

Consider a great circle C of the set (Iα). It corresponds to an isoline η = ηF
0 = j0∆η. The values

uF
i,j0

are located along the great circle with the index i such that −M ≤ i ≤M . Continuing eastward
(see Fig. 3), the circle C crosses the patch East, on which data are interpolated as follows. The circle
C crosses each iso-ξE lines ξE = ξE

i0
= i0∆ξ at a point with coordinates (ξE

i0
, βi0,j0) in the (ξE , β)

coordinate system of patch East. The value βi0,j0 is easily found as the solution of an intersection
system we describe now. The coordinate system on the set (IIβ) is (ξE , β). It is related to the
cartesian coordinates (x, y, z) by

(14)

 x = − cosβ sin ξE ,
y = cosβ cos ξE ,
z = sinβ.

The intersection system bewteen the circle ηF = ηF
j0

of the set (Iα) and the circle ξE = ξi0 of the set

(IIβ) is the point with coordinate (ξE
i0
, βi0,j0) where βi0,j0 is easily found to be (see Section 6),

(15) βi0,j0 = atan
(
− sin ξE

i0 tan ηF
j0

)
.

Since the point with coordinate (ξE
i0
, βi0,j0) does not belong to the grid, we need an interpolated value

of the grid function uk
i,j at it. We adopt a cubic spline interpolation in the variable βE based on

the grid values uII
i0,j , −M ≤ j ≤ M . The �not a knot� end condition is selected. The third section

of the circle C coincides with the iso-η coordinate circle on the Back patch with coordinate number
−j0. As for the patch F the values uB

i,−j0
, −M ≤ i ≤M , belong to the data along the great circle C.

Continuing eastward, the fourth section of the circle C goes across the West patch. Again a cubic
spline interpolation as on the East patch is performed. As a �nal output we obtain a set of data
along the circle C.

The periodic hermitian derivative operator (12) is applied to this set. The space variable is the

angle α ∈ [0, 2π). This gives a set of approximate values of ∂u(α,η)
∂α |η along the circle C. Restricting

this set to patches I(Front) and III(Back) yields the approximations

(16)


uI

α,i,j '
[
∂u(α, η)
∂α |η

(ξi, ηj)
]I

, −M ≤ i, j ≤M,

uIII
α,i,j '

[
∂u(α, η)
∂α |η

(ξi, ηj)
]III

, −M ≤ i, j ≤M.

An analog procedure is used along each circle of the six sets (Iα), (Iβ), (IIα), (IIβ), (Vα) and (Vβ).
This �nally provides approximate values of the two partial derivatives

(17)
∂u(α, η)
∂α |η

,
∂u(ξ, β)
∂β |ξ

,

along all the coordinate lines of each patch k, I ≤ k ≤ V I.
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3.3. Hermitian approximate spherical gradient. We now consider the expression of the spherical
gradient ∇su at each point of the six patches of the cubed-sphere in the local (ξ, η) coordinate system:

(18) ∇su =
∂u

∂ξ |η
gξ +

∂u

∂η |ξ
gη.

where (gξ, gη) is the contravariant basis at point (ξ, η), see (66).
Having at hand approximate values of the partial derivatives ∂u

∂α |η and ∂u
∂β |ξ

in (16), we deduce by

change of variables approximate values of ∂u
∂ξ |η

and ∂u
∂η |ξ

, to be substituted into (18). We have

(19) u(ξ, η) = u(α(ξ, η), η) = u(ξ, β(ξ, η)),

so that the chain rule yields

(20)


∂u

∂ξ |η
=
∂u

∂α |η

∂α

∂ξ |η
,

∂u

∂η |ξ
=
∂u

∂β |ξ

∂β

∂η |ξ
.

In order to compute the two values ∂α
∂ξ |η

and ∂β
∂η |ξ

we use the relations between the system of angles

(ξ, η) and (α, β). It depends on the patch that is considered. Consider for example the Front patch
(I). We have the two trigonometric identities (see Section 6),

(21)

{
tanα = cos η tan ξ,
tanβ = cos ξ tan η.

Using (18), (20), (21), we thus obtain that the spherical gradient at each point of the Front patch is
deduced from ∂u

∂α |η and ∂u
∂β |ξ

by

(22) ∇su =
∂u

∂α |η

(
cos η

1 + tan2 ξ

1 + cos2 η tan2 ξ

)
gξ +

∂u

∂β |ξ

(
cos ξ

1 + tan2 η

1 + cos2 ξ tan2 η

)
gη.

Our approximate spherical gradient is deduced from (22) replacing the derivatives ∂u
∂α |η and ∂u

∂β |ξ
by

their hermitian approximations. On patch Front (I), this gives the pointwise approximation

(23)
∇s,hu

I
i,j = uI

α,i,j

(
cos ηj

1 + tan2 ξi
1 + cos2 ηj tan2 ξi

)
gξ,I

i,j

+uI
β,i,j

(
cos ξi

1 + tan2 ηj

1 + cos2 ξi tan2 ηj

)
gη,I

i,j .

Analog expressions hold for the �ve other patches.

3.4. Interface and corner points. Interface points correspond to the points of the cubed-sphere
located along the 12 �edges� at the interface of the patches. Each of these point belongs to two
patches. There are 12(N −1) such points. The corner points match the eight vertices of the inscribed
cube. They are end points of the �edges� and each of them belongs to three patches. On a given
patch the indices in (3) of the 4(N − 1) interface points are

(24)

{
i = ±M, −M + 1 ≤ j ≤M − 1,
−M + 1 ≤ i ≤M − 1, j = ±M.

The four corner points are

(25) (−M,−M), (−M,M), (M,−M), (M,M).

Consider for example an interface point x located on the boundary between the Front and the East
patches. At this point, the preceding calculation procedure provides two formulas for ∇su, the �rst
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one using the Front (I) coordinate system, the second one using the East (II) coordinate system.
By symmetry, we adopt as a �nal formula at this point the half-sum of the two discrete gradients.
Similarly the discrete gradient at one of the eight �corner� points xc is obtained with a 1/3 weighting
of the approximations of gradients of the three patches where xc is located.

3.5. Summary and remarks. The algorithm above to approximate the spherical gradient can be
summarized as follows:

(i) Assemble the system of data along the six networks of great circles (Iα), (Iβ), (IIα), (IIβ),
(Vα) and (Vβ). Each great circle has four sections. The data along the �rst and third sections
are copied from the primary data. The second and fourth sections require a cubic spline
interpolation along each coordinate line orthogonal to the circle (in the (ξ, η) system).

(ii) Compute the periodic hermitian derivatives along each circle of the six networks.
(iii) Compute the spherical gradient on each patch using formulas like (23).

An essential aspect of this procedure is that the discrete (hermitian) derivative along the six sets
of great circles approximates an intrinsic quantity (the derivative of the grid function with respect to
the curvilinear abscissa). Using a change of variables to the local equiangular coordinates (ξ, η) in
(23) to express the gradient is for convenience only; other local basis could be considered. This is in
contrast to [19, 26] where the local system (ξ, η) is used to calculate approximations. In particular
no ghost points or speci�c boundary interpolation scheme are introduced. The treatment of the
interface of the patches is obained as a corollary of the great-circle approach. Note also that the
hermitian formula (11) can be easily replaced by any higher-order derivative compact operator [11].
The algorithm and most of the coding remain the same. In addition the algorithm is highly parallel
in nature. The computations in step (i) and (ii) are purely one-dimensional. The core of the solver
consists only in solving tridiagonal linear systems of size 4N . The global arithmetic complexity is
easily found to be O(N2).

4. Numerical results

4.1. Spherical gradient accuracy. We report the accuracy of the approximate spherical gradient
in (23) when applied to a function u(x, y, z). The discrete data are the grid function

(26) uk
i,j = u(xk

i,j , y
k
i,j , z

k
i,j), −M ≤ i, j ≤M, I ≤ k ≤ V I.

The error is

(27) e∞ = max
I≤k≤V I,

max
−M≤i,j≤M,

max
1≤l≤3

∣∣∣[∇k
s(ξi, ηj)]l − [∇k

s,hu(ξi, ηj)]l
∣∣∣ .

The maximum is taken on the three components 1 ≤ l ≤ 3 of the gradient and on all the points of
the cubed-sphere.

4.1.1. First test-case. We report in Table 1 the error obtained for the gradient of the oscillating
function

(28) u(x, y, z) = sin(10πx) sin(2πy) sin(6πz),

restricted to the unit sphere. The fourth-order accuracy of the calculated gradient is observed.

4.1.2. Second test-case. The next test-case [23] consists in approximating the gradient of the function
u(x, y, z) = exp(x) + exp(y) + exp(z) restricted to the unit sphere. The results, reported in Table
2 compare favourably with the ones in [23], where an approximation based on spherical harmonics
combined with an icosahedral grid is used. Again the fourth-order accuracy is observed in this case.
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N=8 rate N=16 rate N=32 rate N=64 rate N=128

e∞ 23.475 2.99 2.949 4.61 0.121 4.07 7.205(-3) 3.91 4.774(-4)

∆ξ in km 1250 625 312.5 156.25 78.12

Nb of grid points 386 1538 6146 24578 93306

Table 1. Convergence rate of the hermitian gradient of the function u(x, y, z) =
sin(10πx) sin(2πy) sin(6πz) restricted to the unit sphere.

N=8 rate N=16 rate N=32 rate N=64 rate N=128

e∞ 5.323(-4) 4.07 1.912(-5) 4.00 1.191(-6) 4.00 7.432(-8) 3.72 5.622(-9)

∆ξ in km 1250 625 312.5 156.25 78.12

Nb of grid points 386 1538 6146 24578 93306

Table 2. Convergence rate of the hermitian gradient of the function u(x, y, z) =
exp(x) + exp(y) + exp(z) restricted to the unit sphere.

4.2. Cosine-bell advection test-case. We consider the cosine-bell convection problem described as
a �rst test-case in [27]. This problem serves as a preliminary test to evaluate the accuracy of numerical
methods for the shallow water system in global climatology on the spherical earth. Reference results
for this test-case are widely reported in the literature by various numerical schemes [16, 26, 2]. It
consists in a cosine-bell propagating at constant spherical solid velocity. The exact solution is the
unperturbed pro�le after one full rotation around the earth. The unknown is the height of the bell
h(x, t), solution of the convection equation

(29)

{
∂th(x, t) + c ·∇sh(x, t) = 0,
h(x, 0) = h0(x).

In the spherical longitude-latitude coordinate system (λ, θ), 0 ≤ λ < 2π and −π/2 ≤ θ ≤ π/2. The
tangent unit vectors eλ, eθ are

(30)

{
eλ = −(sinλ)i + (cosλ)j,
eθ = −(sin θ cosλ)i− (sin θ sinλ)j + (cos θ)k.

The solid body advective �eld is c = c(x) = ueλ + veθ with u(x) and v(x) expressed in the (λ, θ)
coordinate system as

(31)

{
u = u0(cos θ cosα+ sin θ cosλ sinα),
v = −u0(sinλ sinα).

The angle α ∈ [0, π/2[ 1 is the angle of the plane motion with the k axis of the poles. The initial
cosine-bell is

(32) h0(λ, θ) =
{

(h0/2) (1 + cos(πr(θ, λ)/R)) , r(θ, λ) < R,
0, r ≥ R.

The value r(λ, θ) is the great circle distance between (λ, θ) and the center of the cosine bell, initially
taken at (λc, θc) = (3π/2, 0). It is given by [27]

(33) r(λ, θ) = a arccos (sin(θc) sin(θ) + cos(θc) cos(θ) cos(λ− λc))

The numerical values associated with (30), (31), (32) are a = 6.37122 106m (earth radius), R = a/3,
u0 = 2πa/(12 days), and h0 = 1000m.

1The angle α should not be confused with the curvilinear absissa introduced in Section 3.1.
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The semi-discrete approximation we consider is the centered �nite-di�erence scheme (method of
lines) de�ned by

(34)
dhk

i,j(t)
dt

+ ci,j ·∇s,hh
k
i,j(t) = 0, −M ≤ i, j ≤M, I ≤ k ≤ V I,

where the approximate gradient ∇s,h is given in (23). The time-stepping scheme is the fourth-order
Runge-Kutta (RK4) scheme. The CFL number is de�ned by

(35) CFL = u0
∆t
∆ξ

.

The scheme is observed to be stable with a time-step given by CFL = 1. To reduce the dispersive
e�ects a �lter of order 10 is applied at each time step along the great circles of the six networks
considered in Section 3.1. The purpose is to add some dissipation to cancel high-frequency dispersive
e�ects. Such a �ltering is a common practice when using compact schemes for wave propagation
problemes, e.g. in aeroacoustics [24, 6, 3]. For a one-dimensional gridfunction (uj)j∈Z the �lter is the
linear operator (uj)j∈Z 7→ (uF,j)j∈Z de�ned by

(36) uF,j =
∑

k

fkuj+k,

where the coe�cients fk are given by [17],

(37)


f0

f1 = f−1

f2 = f−2

f3 = f−3

f4 = f−4

f5 = f−5

 =


772/1024
210/1024
−120/1024
45/1024
−10/1024
1/1024

 .

Note that the �lter is applied only at each time-step and not at each internal step of the time scheme.
Fig. 5 reports the history of the error using a discretisation with N = 40 (9602 unknowns) fand 160
time iterations with an angle α = 45deg. The time step is ∆t = 6480s (108′). Table 3 reports the
value of the relative errors I1, I2, I∞ as required in [27]. The error Ip is de�ned by

(38) Ip =
‖e‖p

‖hex‖p
, 1 ≤ p ≤ +∞,

where e = hex − hcal is the di�erence between the exact and the calculated solution. The notation
‖ . ‖p stands for the canonical discrete version of the continuous functional norm with same name on
the sphere, see (70), (71). The relative maximum and minimum errors are [26],

(39) M(h) =
maxhex −maxhcal

max |hex|
, m(h) =

minhex −minhcal

max |hex|
.

Finally we plot on Fig.6 the isolines of the calculated solution and of the di�erence between the
calculated solution and the exact one for the case α = π/4 (propagation towards north-east). Results
on Fig.5 and Fig.6 compare favourably with analog results using schemes of same order. See for
example [26] where a MUSCL �nite-volume scheme combined with a fourth-order reconstruction
procedure is used on a cubed-sphere of same size.

4.3. A deformational test-case. A deformational �ow test-case consists in calculating the evolu-
tion of an initial data which undergoes a severe deformation during a linear advection transport phase.
The analytic solution is not known during the transient but the solution returns to the initial state
after some time period T . The accuracy of the scheme is thus measured at time t = T . The maximal
deformation occurs at time t = T/2. Such a test-case o�ers an additional challenge compared to the
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Figure 5. History of the three relative errors L1, L2, L∞ for the cosine-bell advec-
tion test-case (29) for a cubed-sphere grid of size N = 40 and α = 45deg.

CFL Direction L1 error L2 error L∞ error M(h) m(h)

1.0 α = 0deg 5.43601(-2) 3.26394(-2) 2.65404(-2) 2.50503(-2) -2.65404(-2)
α = 45deg 5.11205(-2) 2.93375(-2) 2.24284(-2) 2.11063(-2) -2.24284(-2)

0.5 α = 0deg 4.0020(-2) 2.25259(-2) 1.91928(-2) 2.87524(-2) 1.91193(-2)
α = 45deg 3.45757(-2) 1.86116(-2) 1.43016(-2) 1.27016(-2) -1.43016(-2)

Table 3. Relative error for the cosine-bell advection test-case (29) with the fourth-
order centered hermitian scheme (34) and the RK4 time-stepping scheme. The mesh
size is 6× 402 + 2 (9602 unknowns).

solid rotation test-case in Section 4.2. An example of deformational test is given [13] by the following
linear convection equation with velocity c(x, t)

(40)

{
∂th(x, t) + c(x, t) ·∇sh(x, t) = 0,
h(x, 0) = h0(x).

The divergence-free velocity c(x, t) = ∇⊥
s ψ(x, t) is derived from the stream function ψ(x, t) by

(41) ψ(x, t) = k sin2(λ/2) cos2(θ) cos(πt/T ), k > 0,

The components u and v of c(x, t) in the basis (eλ, eθ) are, see (30),

(42)

{
u(x, t) = −ψθ = k sin2(λ/2) sin(2θ) cos(πt/T )
v(x, t) = ψλ/ cos θ = (k/2) sin(λ) cos(θ) cos(πt/T ).
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Figure 6. Contours after one rotation with α = π/4. Left: numerical solution.
Right: error. The cubed-sphere grid uses N = 40. The propagation is oriented
towards north-east.

The initial condition is the double cosine-bell de�ned by

(43) h0(λ, θ) =
{

(hmax/2) (1 + cos(πri(θ, λ)/R)) , ri(θ, λ) < R,
0, r ≥ R, i = 1, 2.

and ri(λ, θ) = arccos (sin θi sin θ + cos θi cos θ cos(λ− λi)) is the great circle distance between (λ, θ)
and(λi, θi) on the sphere of radius a = 1. The numerical scheme is fully centered with design given in
(34). It is formally fourth-order in space and time. The tenth order �lter (37) applied at each time
step.

In Table 4 we report the numerical quantities Iα, α = 1, 2,∞ and the indicators at time T de�ned
by [13]

(44) M ′(h) =
maxhcal −maxhex

∆h0
, m′(h) =

minhcal −minhex

∆h0
, ∆h0 = maxh0 −minh0.

The parameters of the calculation are T = 5 (�nal time in (41) ), k = 2.4 (strength of the stream-
function (41)), (λ1, θ1) = (π, π/3), (λ2, θ2) = (π,−π/3) (location of the two initial cosine-bells (43)).
Three grid sizes N = 20, N = 40, N = 60 are used. They correspond to a longitudinal angle dis-
cretisation of 4.5deg, 2.25deg, 1.5deg, respectively. We report in Table 4 the results at time t = T
with grid size N = 20 (2402 unknowns), N = 40 (9602 unknowns), and N = 60, (21602 unknowns).
The calculations are performed using 200, 400, 600 time steps, respectively, which corresponds to an
approximate CFL number of 0.75.

With the �nest grid (N = 60, 21602 unknowns), the error levels reported in Table 4 are of same
order than the ones reported in [13] where a Discontinuous Galerkin method was used using 38400
unknowns and 2400 time steps. On Fig. 7 are reported the initial cosine bells (43), the solution at
time t = T/2, the calculated �nal state at time t = T where the two cosine bells return to their inital
positions, and �nally the error hcal − hex at time t = T .
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N Nb. of time steps L1 error L2 error L∞ error M ′(h) m′(h)

20 160 0.1688 0.2666 0.2643 -0.2030 0.2627

40 320 0.0378 0.0636 0.0785 0.0006 -0.0591

60 640 0.0084 0.0154 0.0255 0.0007 -0.0213

Table 4. Relative error for the non divergent �ow test-case (40) with the fourth-
order centered hermitian scheme (34) combined with the RK4 time-stepping scheme.
The grid N = 60 has 21602 (=6×602+2) degrees of freedom, with a spatial resolution
of 1.5deg along the equator. The CFL number is approximately 0.75.

Again the results demonstrate the accuracy of the discrete spherical gradient operator (23) and
the capabilities of the centered scheme (34) with �ltering (37) compared to high-order conservative
methods [13] on the sphere.

4.4. A spherical Laplacian test-case using Spherical Harmonics.

4.4.1. Discrete approximate spherical Laplacian. In this section we show how to deduce from the
discrete spherical gradient (23) a simple formula to approximate the spherical laplacian at each point
of the cubed-sphere. The spherical laplacian is de�ned by

(45) ∆su = ∇s · (∇su),

where ∇s· and ∇s are the spherical divergence and the spherical gradient, respectively. In the
coordinate system (ξ, η) of the cubed-sphere, the spherical divergence operator of the vector �eld F
is expressed as

(46) ∇s · F =
1√
Ḡ

(
∂

∂ξ
(
√
ḠF · gξ) +

∂

∂η
(
√
ḠF · gη)

)
.

where Ḡ =
√
|detG| is the metric term and G is the covariant metric tensor (see (65)). From the

gradient ∇su, we deduce on each patch the grid functions u1(ξ, η) and u2(ξ, η),

(47) u1(ξ, η) =
√
Ḡ∇su · gξ, u2(ξ, η) =

√
Ḡ∇su · gη.

Using the discrete gradient (23) we obtain a discrete approximation of u1 and u2 as

(48) (u1,h)k
i,j =

√
Ḡ∇s,hu

k
i,j · g

ξ
i,j , (u2,h)k

i,j =
√
Ḡ∇s,hu

k
i,j · g

η
i,j .

Applying the fourth-order hermitian derivatives to (u1,h)k
i,j , and (u2,h)k

i,j yields the approximate
spherical Laplacian

(49) ∆s,hu
k
i,j =

1√
Ḡ

(
(u1,h)k

ξ,i,j + (u2,h)k
η,i,j

)
.

In (49) (u1,h)ξ and (u2,h)η stand for the hermitian derivatives using (5), calculated on each patch.
Using this setting boundary conditions for (u1,h)ξ and for (u2,h)η are needed in order for (5) to
be applied at internal points. Here we adopt in the ξ and η directions the one-sided fourth-order
approximate derivative given by [7],

(50) u′(x) = δ+x uj −
1
2
(δ+x )2uj +

1
3
(δ+x )3uj −

1
4
(δ+x )4uj +O(h4),

where at point xj the forward di�erence operator δ+x is

(51) δ+x uj =
uj+1 − uj

h
.
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(a) Initial condition at t = 0 (b) Solution at t = T/2

(c) Final position at t = T (d) error hcal − hex at t = T

Figure 7. Non divergent �ow test-case (40). The �nal time is T = 5. The number
of unknowns is 21602 for a resolution of 1.5deg around the equator. The number of
time-steps is 600 with an approximate CFL number of 0.75.

Formula (50) can be rewritten as the one-sided �ve-point operator

(52) ux,i =
1

12h
(−25ui + 48ui+1 − 36ui+2 + 16ui+3 − 3ui+4) .

Finally we adopt at �edge� points and �corner� points the symmetric 1/2 and 1/3 averaging procedure
of Section 3.4. This weighting is observed to retain the uniform fourth-order accuracy.

4.4.2. A spherical eigenvalue test problem. We demonstrate the numerical accuracy of the Laplacian
(49) on the following problem. The spherical harmonic with index (n,m), −n ≤ m ≤ n, 0 ≤ n is
the function de�ned in coordinates (θ, λ) by

(53) fm
n (x) = P̄ |m|n (sin θ)eimλ, 0 ≤ λ < 2π, −π/2 ≤ θ ≤ π/2.
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In (53) the function P̄
|m|
n (z) stands for the associated Legendre polynomial of order n,m with the

standard normalization given by

(54)

∫ 1

−1

P̄ |m|n (x)2dx = 1.

We refer to [9] for a general reference on spherical harmonics. Here we adopt the notation of [18]. The
main property of the spherical harmonics (53) is to be the eigenfunctions of the spherical Laplacian.
The consistency relation for the spherical harmonics fn

m(x) that is numerically tested is

(55) e(fn
m) = max

−M≤i,j≤M,I≤k≤V I
| (∆h,sf

n
m)k

i,j − λn(fn
m)k

i,j |,

where the maximum is taken over all the points of the cubed-sphere. The eigenvalue λn is

(56) λn = −n(n+ 1).

Table 5 reports the accuracy of (55) for the functions f1
1 , f

2
3 , f

4
8 , f

9
14 on a set of cubed-sphere grids.

The results appear to be fourth-order accurate.

N=8 rate N=16 rate N=32 rate N=64 rate N=128

e(f1
1 ) 8.6508(-3) 3.74 6.4381(-4) 4.18 3.5512(-5) 4.34 1.7496(-6) 3.35 1.7066(-7)

e(f2
3 ) 2.3477(-1) 3.70 1.8073(-2) 4.06 1.0805(-3) 3.68 8.3954(-5) 3.51 7.3302(-6)

e(f4
8 ) 1.9702(1) 3.54 1.6991(0) 3.24 1.7884(-1) 3.98 1.1325(-2) 4.00 7.0537(-4)

e(f9
14) 2.0246(2) 2.92 2.666(1) 3.06 3.1909 4.00 1.9809(-1) 3.96 1.2696(-2)

∆ξ in km 1250 625 312.5 156.25 78.12

Nb of grid points 386 1538 6146 24578 93306

Table 5. Convergence rate of the error function e(fm
n ) in (55) for several spherical

harmonics functions.

5. Conclusion

This work demonstrates the e�ciency and the accuracy of a new �nite di�erence approximation
method to the spherical gradient. It is based on the cubed-sphere grid and compact hermitian
derivative along great circles. This allows to design centered compact schemes in a fashion similar to
the planar case.

The present approach o�ers an interesting compromise with other high-order accurate approxi-
mation methods. In contrast to the longitude/latitude grid, it does not have the pole problem, yet
keeping the idea of approximations along great circles. This is an important property when uniformly
accurate approximations are required. In addition the degrees of freedom are pointwise values as in
the standard �nite-di�erence method. This is in contrast with collocation methods using a more elab-
orate analytical background based on special functions such as spherical harmonics [18] or spherical
wavelets [22].

Applications to advanced mathematical climatology problems deserve further studies. A speci�c
challenge consists in analyzing the conservativity properties of �nite-di�erence schemes similar to
(34). As in the non-spherical case it is a crucial issue for the numerical treatment of the shallow-
water system on the sphere. Conservativity is by de�nition satis�ed in ab initio conservative schemes
such as �nite-volume schemes [2, 26] or the Discontinuous Galerkin method [13]. However it turns
out that wave problems on the sphere, (e.g. linearized versions of the SW system [15]), which are
formulated in nonconservative form, are tractable using centered schemes similar to those presented
in Sections 4.2 and 4.3.
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Let us �nally mention that a convergence analysis of the approximation procedure suggested in
this work clearly deserves further attention.

6. Appendix: Cubed-sphere coordinate system and metrics

To perform the computation described in this paper we need several coordinate systems and the
relation between them.

The cartesian reference frame is denoted by (O, i, j,k), with origin O at the center of the sphere.
The centers of the six patches I, II, III, IV, V, V I are the six points

(57) F (1, 0, 0), B(−1, 0, 0), E(0, 1, 0), W (0,−1, 0), N(0, 0, 1), S(0, 0− 1),

respectively.
Particularly useful are the gnomonic coordinates de�ned by

(58)

{
X = tan ξ,
Y = tan η.

Using (X,Y ) facilitates the actual coding of any computation using the cubed-sphere. For example,
the cartesian coordinates of a grid point (x, y, z) of, say, the patch Front, are given in terms of the
equiangular angles (ξ, η) by

(59)

 X = y
x ,

Y = z
x ,

x2 + y2 + z2 = 1.

On each patch, we use in Section 3 the coordinate system (α, η) and (ξ, β). For the patch Front,
the two systems are related by expressing the cartesian coordinates in terms of either (α, η) or (ξ, β)
by

(60)

 x = cosα cos η = cosβ cos(−ξ),
y = sinα = − cos(β) sin(−ξ),
z = cosα sin η = sinβ.

Suppose given η̄ ∈ [−π/4, π/4] �xed and the corresponding iso-η line on any of the six patches
covering the cubed-sphere grid. Then the angle α(ξ) corresponding to the point of equiangular
coordinates (ξ, η̄) is

(61) α(ξ) = atan
(

tan ξ
(1 + tan2 η̄)1/2

)
.

Similarly the angle β(η) corresponding to a point on any iso-ξ line ξ = ξ̄ is

(62) β(η) = atan
(

tan η
(1 + tan2 ξ̄)1/2

)
.

The two identities (61), (62) give on any patch the change of variables (ξ, η) 7→ (α, η) and (ξ, η) 7→
(ξ, β). Using again the chain rule it is readily veri�ed that

(63)


∂α

∂ξ |η
= cos η

1 + tan2 ξ

1 + cos2 η tan2 ξ
,

∂β

∂η |ξ
= cos ξ

1 + tan2 η

1 + cos2 ξ tan2 η
.
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These relations are used in (22). Let us conclude by some remarks on the algebra useful to derive the
metric elements on the cubed-sphere grid. If x(x, y, z) denotes a point on the sphere, the covariant
vectors gξ and gη are given by [14, 26]:

(64) gξ =
∂x

∂ξ
, gη =

∂x

∂η
.

The metric tensor is

(65) G =
[

gξ · gξ gξ · gη

gη · gξ gη · gη

]
The contravariant vectors are deduced by

(66)

{
gξ = G11gξ +G12gη,
gη = G21gξ +G22gη,

where

(67) G−1 =
[
G11 G12

G21 G22.

]
The metric tensor can be expressed using gnomonic coordinates (X,Y ) as

(68) G =
r2

δ4
(1 +X2)(1 + Y 2)

[
1 +X2 −XY
−XY 1 + Y 2

]
,

where δ =
√

1 +X2 + Y 2. The contravariant basis (gξ, gη) is given on the patch Front (for example)
by

(69) gξ =
1

x(1 +X2)

 −X
1
0

 , gη =
1

x(1 + Y 2)

 −Y
1
0

 .
Similar formulas are obtained for the other patches.

Finally the integral I(u) over the sphere of radius R of a function u(x) is approximated by Ĩ([uk
i,j ])

de�ned by

(70) Ĩ =
V I∑
k=I

Ĩk.

The approximate integral on each patch k is

(71) Ĩk = R2∆ξ∆η
M∑′

i,j=−M

√
|Gk

i,j |u
k
i,j ,

where the prime indicates that the terms corresponding to the 4(N − 1) interface indices (24) are
multiplied by 1/2 and that the terms corresponding to the four corner indices (25) are multiplied by
1/3.
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