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Abstract The goal of this study is to apply the MUSCL scheme to the linear
advection equation on general unstructured grids and to examine the eigen-
value stability of the resulting linear semi-discrete equation. Although this
semi-discrete scheme is in general stable on cartesian grids, numerical cal-
culations of spectra show that this can sometimes fail for generalizations
of the MUSCL method to unstructured three-dimensional grids. This moti-
vates our investigation of the influence of the slope reconstruction method
and stencil on the eigenvalue stability of the MUSCL scheme. A theoret-
ical stability analysis of the first order upwind scheme proves that this
method is stable on arbitrary grids. In contrast, a general theoretical result
is very difficult to obtain for the MUSCL scheme. We are able to identify
a local property of the slope reconstruction that is strongly related to the
appearance of unstable eigenmodes. This property allows to identify the
reconstruction methods that are best suited for stable discretizations. The
explicit numerical computation of spectra for a large number of two- and
three-dimensional test cases confirms and completes the theoretical results.
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1 Introduction

The finite volume MUSCL method to solve hyperbolic conservation laws
was introduced by B. Van Leer in [53,54] thirty years ago. The main idea
is to increase the accuracy of the first order finite volume scheme by a
piecewise linear reconstruction that is used to evaluate upwinded fluxes at
the cell interfaces. General references are [29,39,52,34,19,20], see also
[15,5].

Practical applications for convection dominated flows in complex ge-
ometries have motivated many extensions of the MUSCL approach to gen-
eral unstructured grids in 2 and 3 dimensions. In this context, one of the
principal difficulties is to obtain high order accurate reconstructions that
do not destroy the stability and robustness of the numerical scheme. The
growing need for industrial applications of Large Eddy Simulations on un-
structured grids makes this question more stringent than before. This topic
is still an active field of research [2,31,36,51,11,16,35].

The purpose of this paper is to explore the relationship between the
piecewise linear reconstruction and the stability of the MUSCL scheme. To
isolate the influence of the former on the latter, the analysis proceeds in the
following setting :

– We adopt the framework of the method of lines because it allows to
study the stability of the MUSCL method regardless of the time stepping
scheme. The application of the MUSCL scheme and the method of lines
to a hyperbolic conservation law produces a dynamical system whose
stability can be examined by the theory of dynamical systems.

– Slope limiters modify the piecewise linear reconstruction at the cell in-
terfaces. In order to focus on the impact of the reconstruction step, we
study the MUSCL scheme in the absence of slope limiters.

– We examine the specific case of the linear advection equation with con-
stant velocity under periodic boundary conditions. Obviously, any im-
plementation of the MUSCL scheme for this equation should result in
a stable dynamical system. Furthermore, the linear advection equation
is of primary importance to understand many properties of numerical
schemes, such as accuracy, dispersion and stability.

In this context, the main interest of this paper is the matrix stability of the
dynamical system that results from the application of the MUSCL scheme
to the linear advection equation. As far as we know, this question is math-
ematically open on general unstructured grids. The goal of this paper is
in particular to analyze the influence of the mesh type, the reconstruction
method and the stencil size on the asymptotic stability of the dynamical
system. A detailed discussion of the relationship between this kind of sta-
bility analysis and the classical Von Neumann stability analysis (Godunov-
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Ryabenkii and Lax-Richtmeyer) can be found in [50,29,23,43]. Recall that
on a periodic cartesian grid, the two points of view are equivalent [29].

It is now necessary to explain the interest of this specific notion of sta-
bility. We begin by the following observations about slope limiters and sta-
bility in order to relate the present work to the existing literature :

– Practical implementations of the MUSCL scheme need slope limiters to
avoid oscillations near discontinuities. This step, which is necessary to
restore the monotonicity near sharp fronts, was already present in the
original work of Van Leer. Since the pioneering contribution by Harten
[26], the quest for a general mathematical framework for the design
of slope limiters became a very active field of research. ENO/WENO
schemes go beyond a simple slope reconstruction by selecting the sten-
cils leading to the least oscillating reconstruction, see for example [13,
1,33,48]. An important contribution in the framework of irregular gen-
eral grids is due to Sonar who introduced an ENO slope reconstruction
using radial basis functions to avoid the drawbacks of polynomial re-
construction, [49,32].

– Another important motivation for the design of slope limiters are condi-
tions like Lp stability, entropy consistency, preservation of the positivity
of physical quantities like mass density, see for example [10,42,7,8]. In
certain cases, convergence towards a (the) weak solution of the conser-
vation law can be proved. Error estimates are in general more difficult
to obtain [17,12,41]. Concerning the finite volume scheme on unstruc-
tured grids, we refer to [3] for a rigorous proof of a maximum principle
using a specific class of limiters. The result can be extended to the so
called SSP Runge-Kutta methods, see [47,22].

These observations highlight the importance of slope limiters for the de-
sign of MUSCL schemes. However, the numerical dissipation introduced by
slope limiters can be difficult to control in practical applications on unstruc-
tured grids. A particular example is the computation of a supersonic hot jet
using LES turbulence modeling presented in [40]. On a purely tetrahedral
grid, the numerical dissipation is too important for the jet to become tur-
bulent and an excessive numerical dampening occurs. On a structured grid,
however, the computation results in a more realistic unsteady solution. The
same situation has been observed for the computation of a subsonic flow
over a deep cavity on unstructured grids [9], albeit to a lesser extent. Note
finally that the computation on the unstructured grid is less accurate than a
similar computation carried out on structured grids by Larchevêque et al.
[37].

In such a situation, it is natural to relax the monotonicity requirements
and to use slope limiters that modify the piecewise linear reconstruction as
slightly as possible. However, the computation of the subsonic flow over a
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deep cavity fails without the stronger slope limitation due to a lack of ro-
bustness. The comparison between structured and unstructured grids shows
that the lack of robustness has to come from the piecewise linear recon-
struction on unstructured grids, see [25,24].

This example shows that the piecewise linear reconstruction has a direct
impact on the robustness and stability of the MUSCL scheme regardless of
the slope limiters. We emphasize in particular that the MUSCL discretiza-
tion of the linear advection equation using upwinded fluxes and a centered
slope reconstruction on a uniform grid in 1 dimension is stable in the sense
of matrix stability without any slope limitation, see [9]. This shows that
there are situations where the piecewise linear reconstruction guarantees
the stability of the scheme without the help of slope limiters.

The preceding observations suggest to proceed in the following way.

1. In a first step, investigate the influence of the piecewise linear recon-
struction on the stability of the MUSCL scheme and identify the recon-
struction methods that increase the robustness of the scheme. It seems
in particular necessary to establish a local criterion that allows to com-
pare different slope reconstructions regarding their impact on the global
stability of the scheme, even if this criterion is only an approximate and
qualitative one.

2. In a second step that is not covered by the present paper, it will be nec-
essary to develop monotonicity requirements that add less numerical
dissipation than those used for example in [9,40].

The outline is as follows. Subsection 2.1 presents the formulation of cell
centered finite volume schemes for conservation laws under the method of
lines. As there is no canonical way to reconstruct slopes on unstructured
meshes, a general approach to this question is developed in Subsection 2.2.
Subsection 3.1 outlines the MUSCL discretization of the advection equa-
tion and Subsection 3.2 presents the basic concepts of linear stability that
are needed for our analysis. Subsection 3.3 describes the main theorem on
the stability of the first order upwind finite volume scheme. Subsections
3.4, 3.5 and 3.6 present the analysis and the main results for the MUSCL
scheme. These results lead to specific recommendations to enhance the sta-
bility properties of the MUSCL scheme concerning the choice of slope re-
construction on general unstructured grids, summarized in Subsection 3.7.
Section 4 presents an extensive numerical study that has been performed
with MAPLE. It completes the theoretical part by a range of interesting test
cases covering several types of meshes in two and three dimensions.

Note finally that the present study is motivated by extensive numer-
ical experiments in three-dimensional applications to internal flows and
aerothermochemistry with the package CEDRE developed by ONERA. Gen-
eral references for CEDRE are [14,40,44,9,38,46].
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The present paper was announced in [25]. See also [24] for more details.

2 Spatial Discretization on General Unstructured Meshes

2.1 General Formulation of Semi-discrete Finite-Volume Schemes

This section recalls the general setting of cell centered finite volume schemes
on unstructured meshes in the context of the method of lines. Consider a
conservation law

∂tu (x, t) + ∇ · f (u (x, t)) = 0 (2.1)

where x ∈ Ω ⊂ Rd and t ≥ t0. Since our analysis does not address the
specific influence of boundary conditions, they are assumed to be periodic.
In the sequel, vectors in Rd will be written in bold letters like c, matrices in
capital letters and vectors in the space of semi-discrete solutions in fraktur
like u.

The geometric notation is as follows. A general unstructured grid is a
triangulation of Ω consisting of N general polyhedra,

Ω =
N⋃

α=1

Tα .

The cell with number α is denoted Tα, with barycenter xα and d-volume
|Tα| . The faceAαβ , with barycenter xαβ , has a normal vector aαβ oriented
from cell Tα to Tβ and of length ‖aαβ‖ equal to the surface |Aαβ |. The
oriented normal unit vector of the face Aαβ is ναβ .

Furthermore, the vectors hαβ , kαβ are defined as

hαβ = xβ − xα ; for all cells Tα, Tβ

kαβ = xαβ − xα ; for all adjacent cells Tα, Tβ .

The vector jαβ is the orthogonal projection of kαβ on hαβ and bαβ is
defined by kαβ = jαβ + bαβ . The vector jαβ is needed to define a slope
reconstruction method tested in the numerical study of Section 4. Fig. 2.1
shows an example of the cell geometry.

Remark 2.1 ( Curved faces ) Note that the facesAαβ need not be flat, i.e. the
normal can vary from point to point. Such faces occur in three-dimensional
irregular meshes whenever the vertices shared by two cells do not lie in a
plane. The face is then spanned by the closed path formed by the line seg-
ments joining the vertices. In this case, even if the face itself is not unique,
a normal vector can be uniquely defined as

aαβ =
∫
Aαβ

ν (x) dσ
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Figure 2.1: Typical cell geometry of a general polyhedral grid

where ν (x) is the unit normal in a point x ∈ Aαβ . Green’s Theorem
guarantees that two faces delimited by the same closed path give the same
aαβ .

Remark 2.2 As will be shown in Section 2.2, gradient reconstruction re-
quires that at each cell Tα the family {hαβ}β adjacent to α contain a set of d
linearly independent vectors. This assumption is satisfied by all regular and
irregular meshes used in practice.

The following convention simplifies the notation of sums over cells. When-
ever two cells have no common interface, aαβ = 0 and kαβ = 0 and the
face Aαβ is defined to be empty so that any surface integral over Aαβ is
automatically zero. In addition, aαα, kαα and hαα are defined to be zero.
This allows to drop the neighborhood in all sums and to write

∑
α instead of∑

β adjacent to α. An example of this convention is the application of Green’s
Theorem to a constant function.

0 =
∫
Tα

∇ (1) dx =∑
β adjacent to α

∫
Aαβ

ν (x) dσ =
∑

β adjacent to α aαβ .
(2.2)

Now the sum in equation (2.2) can simply be written as∑
β

aαβ = 0 . (2.3)
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Note that identity (2.3) remains valid for cells with curved faces.
Integration of the conservation law (2.1) over any cell Tα gives

d

dt

∫
Tα

u (x, t) dx = −
∫

∂Tα

ν · f (u (x, t)) dσ (2.4)

or equivalently

dūα (t)
dt

= − 1
|Tα|

∑
β

∫
Aαβ

ναβ · f (u (x, t)) dσ (2.5)

where the average of u over Tα is

ūα (t) =
1
|Tα|

∫
Tα

u (x, t) dx . (2.6)

The simplest finite volume scheme consists in evolving the quantities
uα (t) approximating the exact averages ūα (t) along the dynamical system

duα (t)
dt

= − 1
|Tα|

∑
β

∫
Aαβ

f̃αβ (uα (t) , uβ (t)) dσ (2.7)

where the numerical flux function f̃αβ (wint, wext) depends on the two states
wint and wext on each side of the cell interface. We adopt the convention that
for a face Aαβ oriented from cell Tα to cell Tβ , wint is the state on side α
and wext the state on side β. The requirement

f̃αβ (wint, wext) = −f̃βα (wext, wint)

guarantees the conservation of the total average

d

dt

{
N∑

α=1

|Tα|uα (t)

}
= 0 . (2.8)

The convergence of the scheme (2.7) usually requires the numerical flux
to be consistent in the sense that

f̃αβ (u, u) = f (u) · ναβ for all u ∈ R. (2.9)

A proof of convergence for the time-discrete version of the scheme (2.7)
in two dimensions can be found in [34, ch. 3.3]. A proof of strong con-
vergence of the scheme (2.7) in the case of the linear advection equation
is given in [17]. The convergence rate for this particular case has recently
been improved in [41].
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However, on a general unstructured mesh the scheme (2.7) has a local
truncation error of order O (1) as shown in [34, Lemma 3.2.8, page 161].

dūα (t)
dt

= − 1
|Tα|

∑
β

∫
Aαβ

f̃αβ (ūα (t) , ūβ (t)) dσ + O (1) (2.10)

To overcome this prohibitive lack of spatial accuracy in (2.10), the argu-
ments uα (t) and uβ (t) in (2.7) are replaced by locally reconstructed val-
ues as follows. For a fixed time t0 a function w is reconstructed from the
time dependent cell averages u = (u1, . . . , uN ) in a certain neighborhood
of a given cell Tα. The dependence of w on the cell averages u (t0) is de-
noted by square brackets w [u (t0)] and the dependence on x by the usual
parentheses w [u (t0)] (x). The reconstruction process operates piecewise
on each cell so that only the cell averages in a certain neighborhood of a
cell Tα determine the restriction of w on Tα. In the sequel, this restriction
is denoted by wα, such that w can be written as

w [u (t0)] (x) =
∑
α

wα [u (t0)] (x) χTα (x) (2.11)

where χTα (x) is the characteristic function of the cell Tα.
To produce a useful scheme, the reconstruction must satisfy the two

following requirements.
– Conservation

1
|Tα|

∫
Tα

w [u (t0)] (x) dx = uα ; 1 ≤ α ≤ N (2.12)

– Accuracy

|w [u (t0)] (x)− u (x, t0)| ≤ O (hp) (2.13)
The relation (2.13) must hold uniformly in x ∈ Ω for all sufficiently
smooth functions u with cell averages u. In (2.13), h is the maximum diam-
eter of the mesh cells. The integer p is called the order of the reconstruction.
The scheme deduced from (2.7) using the reconstruction is now

duα (t)
dt

= − 1
|Tα|

∑
β

∫
Aαβ

f̃αβ (wα [u (t)] (x) , wβ [u (t)] (x)) dσ

(2.14)
which can be shown to be of consistency O

(
hp−1

)
if the numerical flux

is Lipschitz-continuous in both arguments. The final step is to approximate
the integral in (2.14) by an appropriate quadrature formula which gives the
dynamical system

duα (t)
dt

= − 1
|Tα|

∑
β

∑
q

ωq f̃αβ (wα [u (t)] (xαβ;q) , wβ [u (t)] (xαβ;q)) .

(2.15)
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In equation (2.15), the xαβ;q are the quadrature points on Aαβ and the ωq

are the quadrature weights. If the expression under the integral on the right
hand side of (2.14) is a polynomial of degree p in x and if the quadrature
formula integrates exactly such polynomials, this step does not introduce
any new discretization errors.

2.2 Analysis of Gradient Reconstruction on General Unstructured Meshes

In practical applications, the piecewise linear reconstruction of the MUSCL
scheme is known to provide a radical improvement in spatial accuracy when
compared with the first order scheme (2.7). Reconstructing a slope on a
cartesian mesh is quite easy using directional splitting. However, on general
unstructured meshes there is no canonical method.

A piecewise linear reconstructed function w is defined as

wα [u (t)] (x) = uα (t) + σα [u (t)] · (x− xα) for x ∈ Tα (2.16)

where the cell gradient σα [u] is obtained from the cell averages u = (u1, . . . , uN )
in a neighborhood of the cell. Equation (2.16) shows that the problem of
piecewise linear reconstruction is equivalent to the problem of slope recon-
struction from cell averages.

In order for (2.16) to fulfill the accuracy requirement according to (2.13)
with p = 2, we define a consistent slope reconstruction as

Definition 2.3 (Consistent Slope Reconstruction) A piecewise linear re-
construction is called consistent on a neighborhood of a cell Tα if for any
affine function u on this neighborhood we have

wα [u] (x) = u (x)

where u is the vector of cell averages of the function u.

The reconstruction stencil of the gradient σα in cell Tα is the set of cells
Tβ such that σα depends on uβ . The first neighborhood of a cell Tα is the
set of all cells sharing a common face with Tα. The second neighborhood
of a cell Tα is defined as the union of the first neighborhoods of the first
neighbors of Tα, excluding Tα itself.

Taking the gradient and the cell average of a function are both linear
operations. Consistent gradient reconstruction is the inverse operation of
the cell average on the space of polynomials of degree one. This justifies to
focus on gradient reconstruction methods with linear dependence

u 7→ σα [u] =
∑
β

sαβ (uβ − uα) . (2.17)
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The vectors sαβ in (2.17) are parameter vectors in cell Tα. Again sαβ , 0
if cell Tβ is not in the reconstruction stencil of cell Tα.

If the underlying function u is linear with gradient σ ∈ Rd then uβ =
uα + σ · hαβ . The condition of first order consistency can therefore be
written as

σ =
∑
β

sαβ (hαβ · σ) for all σ ∈ Rd . (2.18)

This is equivalent to the matrix identity∑
β

sαβ ⊗ hαβ = Id×d . (2.19)

Let mα be the number of cells in the reconstruction stencil of cell α and
Wα , {β1, β2, . . . , βmα} the cell indexes in that stencil. On cell Tα, the
unknown vectors sαβ form the columns of a d×mα matrix Sα. Similarly,
the metric vectors hαβ form the rows of the mα × d matrix Hα

Ht
α = [hαβ1 ,hαβ2 , . . . ,hαβm ] (2.20)

Sα = [sαβ1 , sαβ2 , . . . , sαβm ] . (2.21)

Equation (2.19) can be written as the matrix equation with unknown Sα

SαHα = Id×d . (2.22)

On the assumption that rank (Hα) = d, (see Remark 2.2 above), the general
solution is expressed as

Sα = S̃α + ΛαBα (2.23)

where S̃α is a particular solution and Bα a maximal rank solution of the
homogeneous equation ( O(mα−d)×d is the zero matrix )

BαHα = O(mα−d)×d . (2.24)

Λα is an arbitrary matrix of size d× (mα − d) representing the degrees of
freedom of the consistent reconstruction in cell Tα. Different choices of Λα

lead to different consistent reconstruction methods.
The popular least squares reconstruction of the cell gradient is specified

in the following

Proposition 2.4 (Least-Squares Reconstruction) Let the matrix Hα have
rank d and let σα ∈ Rd be the solution of the least squares problem

min
σ∈Rd

 ∑
β∈Wα

(uβ − uα − hαβ · σ)2

 . (2.25)

Then σα is unique and given by coefficients sαβ that are the columns of the
minimum Frobenius norm solution to equation (2.22).
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Proof : The solution σα of Problem (2.25) satisfies the equation∑
β∈Wα

hαβ (hαβ · σ) =
∑

β∈Wα

hαβ (uβ − uα) . (2.26)

Let δu =
(
uβ1 − uα, . . . , uβmα

− uα

)
. Then the unique solution of (2.26)

is
σ = S̃αδu =

(
Ht

αHα

)−1
Ht

αδu . (2.27)

The matrix S̃α is the pseudo-inverse of Hα that is known to minimize the
Frobenius norm ‖Sα‖F =

√
tr (St

αSα) among the solutions of (2.22), see
[21, Chap.5.5.4, pp 257 sqq.].

ut

3 Stability Analysis of the Semi-discrete MUSCL scheme

This section presents the stability analysis of the semi-discrete MUSCL
scheme for the linear advection equation with constant velocity. In Subsec-
tion 3.1, we derive the semi-discrete equations. Subsection 3.2 introduces
preliminary concepts of linear stability that are needed later. A special em-
phasis is put on a variant of the classical Lyapunov Theorem. Subsection
3.3 contains a general stability result for the upwinded first order finite vol-
ume scheme on arbitrary meshes. Finally, in Subsections 3.4, 3.5 and 3.6
we discuss the main results of this paper.

3.1 Construction of the Semi-discrete Equations

The linear advection equation with constant velocity c ∈ Rd is

∂tu (x, t) + c ·∇u (x, t) = 0 , (x, t) ∈ Rd × R+ . (3.1)

Its conservative flux is linear in u

f (u) = cu. (3.2)

The discretization of (3.1) follows the lines of Subsection 2.1. The usual
upwinded numerical flux used in (2.14) is

f̃αβ (wint, wext) = c · ναβ
wint + wext

2
+ |c · ναβ |

wint − wext

2
. (3.3)

The use of piecewise constant and linear reconstruction in (2.14) leads to
the following two dynamical systems :
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– The first order finite volume scheme

duα (t)
dt

=
∑
β

J̃αβuβ (t) ; 1 ≤ α ≤ N. (3.4)

– The MUSCL finite volume scheme

duα (t)
dt

=
∑
β

Jαβuβ (t) ; 1 ≤ α ≤ N. (3.5)

The spatial discretization operator J̃ in (3.4) is given by

J̃αβ = − 1
|Tα|

∑
γ

(c · aαγ)+ δαβ −
1
|Tα|

(c · aαβ)− (3.6)

where δαβ is the Kronecker symbol. The operator J of the MUSCL scheme
(3.5) is

Jαβ = − 1
|Tα|

{∑
γ

(c · aαγ)+ δαβ + (c · aαβ)− (3.7)

+
∑

γ

(aαγ · c)+ kαγ · sαβ −
∑

γ

(aαγ · c)+ kαγ · sα δαβ

−
∑

γ

(aγα · c)+ kγα · sγβ + (aβα · c)+ kβα · sβ

}
.

where sα ,
∑

β sαβ . The right hand side of (3.7) is obtained by inserting
in the dynamical system (2.14) the reconstructed functions

wα = uα + (x− xα) ·
∑

γ

sαγ (uγ − uα) (3.8)

wβ = uβ + (x− xβ) ·
∑

γ

sβγ (uγ − uβ)

and the numerical flux (3.3) in the following way.

|Tα|
duα

dt
= (3.9)

−
∑
β

∫
Aαβ

(c · ν (x))+

{
uα + (x− xα) ·

∑
γ

sαγ (uγ − uα)

}
dσ

−
∑
β

∫
Aαβ

(c · ν (x))−

{
uβ + (x− xβ) ·

∑
γ

sβγ (uγ − uβ)

}
dσ .



Stability Analysis of the MUSCL Method on Unstructured Grids 13

When the face Aαβ is flat, i.e. ν (x) = ναβ = const., the operator (3.7)
follows from (3.9) because of the relation∫

Aαβ

(c · ν (x))± (x− xα) dσ = (c · aαβ)± kαβ . (3.10)

If the face is curved, (see Remark 2.1 above), (3.7) is an approximation of
(2.14). The first order operator (3.6) is always exact since∫

Aαβ

(c · ν (x))± dσ = (c · aαβ)± (3.11)

holds both for flat and curved faces.

3.2 Preliminary Concepts of Linear Stability

Recall that the linear advection equation preserves the norm of any ini-
tial condition u0. Consider for example periodic boundary conditions in
Ω = [0, 1]d. The form of the solution u (x, t) = u0 (x− ct) implies the
conservation of all norms Lp (Ω), 1 ≤ p ≤ ∞,

‖u (., t)‖Lp(Ω) = ‖u0‖Lp(Ω) . (3.12)

Let us examine to which extent property (3.12) can be preserved by the
schemes (3.6) and (3.7).

As mentioned at the end of Section 1, the main interest of this work is
the matrix stability analysis in the usual sense of (3.6) and (3.7), see [29,
vol. 1]. In general, this kind of analysis leads to stability conditions that are
different from those given by the Lax stability analysis. However, it is well
known that the two kinds of stability conditions are the same for periodic
problems on cartesian grids, see [29, vol. 1].

Let us start by recalling the following result for a general linear homo-
geneous autonomous system

du (t)
dt

= Ju (t) , u (0) = u0 , u (t) ∈ CN , J ∈ MN (C) (3.13)

whose solution is u (t) = exp (tJ) u0, see [18, Lm. 3.20 on p.95 and Th.
3.23 on p. 97].

Proposition 3.1 (Stability of Linear Systems in Finite Dimension) The
system (3.13) is stable in the sense that

C = sup
t≥0

‖exp (tJ)‖ < ∞ (3.14)

if and only if all eigenvalues λ of J satisfy :
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(i) < (λ) ≤ 0 where < (λ) is the real part of λ.
(ii) if < (λ) = 0 then the Jordan index ı (λ) = 1 where ı (λ) is the maximal

dimension of the Jordan blocks of J containing λ.

In particular, the solution of a stable system satisfies

sup
t≥0

‖u (t)‖ ≤ C ‖u0‖ . (3.15)

Property (3.15) has to be satisfied as a minimal requirement by the semi-
discrete finite volume operators (3.6) and (3.7) independently of the advec-
tion velocity c ∈ Rd.

Definition 3.2 ( Stable finite volume operator ) The spatial discretization
operators J̃ in (3.6) and J in (3.7) are called stable if all their eigenvalues
satisfy properties (i)-(ii) of Proposition 3.1 for all advection velocities c ∈
Rd.

For the convenience of the reader, the following theorem collects several el-
ementary facts about the location of the spectrum of a matrix A ∈ MN (C).
Proofs can be found in [55, Theorem 1.1., p. 4, Theorem 3.7., p. 79], [27,
Theorem 6.6.1, p. 344] and [28, Property 1.2.6, p. 10].

Theorem 3.3 ( Geršgorin Disks, Field of Values )

(i) The spectrum of A is contained in the union of all Geršgorin disks

σ (A) ⊆
N⋃

i=1

Γi (A)

where the i-th Geršgorin disk of A is defined by

Γi (A) =

z ∈ C : |z − aii| ≤
∑
j 6=i

|aij |

 .

(ii) the spectrum of A lies within the field of values of A

σ (A) ⊆ F (A) .

The field of values F (A) is defined by

F (A) =
{
(z, Az) : z ∈ CN , (z,z) = 1

}
where (., .) denotes the Hermitian product on CN .

ut
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Theorem 3.3 turned out to be insufficient to locate accurately the spec-
trum of the operator (3.7). Even on a regular mesh in one dimension, each
Geršgorin disk of the MUSCL operator J in (3.7) intersects the complex
right half plane although the spectrum is contained in the left half plane.
We have examined other eigenvalue inclusion sets presented in [55], but
unfortunately the result remains the same.

This observation led to a different approach based on the classical Lya-
punov Theorem, [28, Theorem 2.2.1 on page 96]. Actually, we need the
following variant.

Theorem 3.4 ( Extended Lyapunov Theorem ) Let J ∈ MN (C). The
following properties are equivalent :

(i) J satisfies the conditions of Proposition 3.1, that is all eigenvalues λ of
J have < (λ) ≤ 0 and if < (λ) = 0 then the Jordan index ı (λ) = 1.

(ii) There exists a positive definite matrix G such that the matrix Q = GJ +
J∗G is negative semidefinite.

Proof : First observe that properties (i) and (ii) are true for a matrix J if and
only if they are true for any matrix similar to J . This is clear for property
(i). Now assume that J has property (ii) and let Ĵ = S−1JS be a matrix
similar to J . Then

S∗GS S−1JS + S∗J∗ (S∗)−1 S∗GS = S∗QS

Thus property (ii) is true for Ĵ with matrices Q̂ = S∗QS and Ĝ = S∗GS
because Q̂ being congruent to Q is negative semidefinite and Ĝ being con-
gruent to G is positive definite.

Proof of (i)⇒(ii) : Let J have property (i). According to the preliminary
observation one can assume J to be in Jordan normal form Ĵ . For all Jordan
blocks associated with eigenvalues λ with < (λ) < 0 one can suppose that
the supra diagonal elements are equal to an ε > 0 instead of 1, see [27,
Corollary 3.1.13, page 128]. Choose an ε satisfying

ε < min {|< (λ)| , λ ∈ σ (J) , < (λ) < 0} . (3.16)

All Jordan blocks corresponding to eigenvalues λ with < (λ) = 0 are diag-
onal because ı (λ) = 1. The matrix Q̂ = Ĵ + Ĵ∗ is Hermitian and in block
diagonal form. Relation (3.16) ensures that the blocks of Q̂ associated with
λ such that < (λ) < 0 are strictly diagonally dominant. The blocks of Q̂

associated with λ such that < (λ) = 0 are zero. The matrix Q̂ is therefore
negative semidefinite which proves that the Jordan normal form Ĵ has prop-
erty (ii) with Ĝ being the identity matrix and Q̂ = Ĵ + Ĵ∗. Since the matrix
J is similar to Ĵ , it has property (ii).
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Proof of (ii) ⇒(i) : Assume that J has property (ii). Multiplying the
relation GJ + J∗G = Q by G− 1

2 on both sides gives

G
1
2 JG− 1

2 + G− 1
2 J∗G

1
2 = G

1
2 JG− 1

2 +
(
G

1
2 JG− 1

2

)∗
= G− 1

2 QG− 1
2 .

This means that the Hermitian part of the matrix G
1
2 JG− 1

2 is negative
semidefinite. Thus, all eigenvalues of this matrix have non positive real
parts. The same holds true for the eigenvalues of J because it is similar to
G

1
2 JG− 1

2 .
It remains to show that any purely imaginary eigenvalue λ of J has a

Jordan index ı (λ) = 1. According to the observation at the beginning of
the proof one can suppose J to be in Jordan normal form. Assume that there
is an eigenvalue λ = iµ , µ ∈ R, associated with the l-th Jordan block J (l)

of J . Suppose further that J (l) is not diagonalizable. Because of the block
structure of the Jordan normal form of J the relation GJ+J∗G = Q can be
written block by block. Let G(l) be the diagonal block of G corresponding
to J (l). The block G(l) must be positive definite as a diagonal block of G.
Then G(l)J (l) + J (l)∗G(l) = Q(l) where Q(l) is the corresponding diagonal
block of Q. Q(l) must be negative semidefinite as a diagonal block of Q.
The relation G(l)J (l) + J (l)∗G(l) = Q(l) can be written in explicit form asg11 g12 · · ·

g21 g22
...

. . .




iµ 1 0 · · ·

0 iµ 1
. . .

...
. . . . . . . . .

 +


−iµ 0 · · ·

1 −iµ
. . .

0 1
. . .

...
. . . . . .


g11 g12 · · ·

g21 g22
...

. . .

 =

 0 g11 · · ·
g11 g12 + g21

...
. . .



In particular, Q
(l)
11 = 0 and Q

(l)
12 = g11. But g11 > 0 since G is posi-

tive definite. However, a matrix Q(l) with Q
(l)
11 = 0 and Q

(l)
12 > 0 cannot

be semidefinite. This contradiction shows that the Jordan block associated
with λ must be diagonal.

ut

Combining Proposition 3.1 and Theorem 3.4 yields the following

Corollary 3.5 Consider the initial value problem

du (t)
dt

= Ju (t) , u (0) = u0 , u (t) ∈ CN , J ∈ MN (C) . (3.17)
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Then there is a constant C such that

‖u (t)‖ ≤ C ‖u0‖ for all t ≥ 0

if and only if there exists a positive definite matrix G such that the matrix
Q = GJ + J∗G is negative semidefinite.

3.3 Stability Analysis of the First Order Finite-Volume Scheme

This section deals with the stability analysis of the dynamical system (3.4)

duα (t)
dt

=
∑
β

J̃αβuβ (t) ; 1 ≤ α ≤ N

defined by the first order finite volume operator (3.6)

J̃αβ = − |Tα|−1

{∑
γ

(c · aαγ)+ δαβ + (c · aαβ)−

}
.

Although the matrix of (3.6) is real valued, the operator (3.6) has in general
complex eigenvalues. For this reason it is preferable to work with complex
vectors u ∈ CN . The complex conjugate of u ∈ CN is denoted by u∗.

Observe first that all eigenvalues of J̃ lie in the left closed half plane
of the complex numbers. Indeed, for all cells Tα, relation (2.3) implies the
existence of a face Aαβ such that c · aαβ > 0. Therefore the diagonal
elements of (3.6) satisfy

J̃αα = − |Tα|−1
∑

γ

(c · aαγ)+ < 0 (3.18)

and the center of each Geršgorin disk of J̃ lies on the negative real axis.
The off diagonal elements of (3.6) satisfy

J̃αβ = − |Tα|−1 (c · aαβ)− ≥ 0 . (3.19)

The radius ρα of the α-th Geršgorin disk is thus given by

ρα =
∑
β 6=α

∣∣∣J̃αβ

∣∣∣ =
∑
β 6=α

J̃αβ = − |Tα|−1
∑
β

(c · aαβ)− .

The geometric relation (2.3) proves that ρα = −J̃αα. Thus all Geršgorin
disks lie in the left closed half plane of the complex plane. According to
point (i) of Theorem 3.3 the same is true for the spectrum of J̃ . Therefore,
the dynamical system (3.4) cannot have exponentially growing solutions.
The following theorem gives a complete result for the stability of (3.4)
that excludes even polynomially growing solutions and is valid on arbitrary
meshes and in arbitrary dimension. An equivalent stability result for the
fully discrete finite volume scheme can be found in [17].
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Theorem 3.6 (Stability of the First Order Finite-Volume Operator) Let
J̃ be the first order finite volume operator (3.6) and let ‖.‖ denote the norm
induced by the usual Hermitian product (., .) on CN . Then any solution of
system (3.4) satisfies

sup
t≥0

‖u (t)‖ ≤ C ‖u0‖

with C given by

C =

√
maxα |Tα|
minα |Tα|

.

This result holds on arbitrary grids and for all advection velocities c ∈ Rd.

Proof : It is sufficient to prove that the operator (3.6) has property (ii) of
Theorem 3.4. Some simple identities make this possible. The first is the
antisymmetry of the face normal, i.e.

(c · aαβ)− = (−c · aβα)− = − (c · aβα)+ . (3.20)

The second is the identity (2.3) in the form

∑
β

(c · aαβ)+ +
∑
β

(c · aαβ)− = 0 (3.21)

In addition, equations (3.20) and (3.21) provide the useful identity

∑
α |u|

2
α

∑
β (c · aαβ)+ =

∑
α |u|

2
α (−1)

∑
β (c · aαβ)− =∑

α |u|
2
α

∑
β (c · aβα)+ =

∑
β |u|

2
β

∑
α (c · aαβ)+

(3.22)

that can also be found in [17]. Let u be a solution of the semi-discrete
equation

du (t)
dt

= J̃u (t) , u (0) = u0

Consider the positive definite diagonal matrix Ĝ with elements

ĝαβ = |Tα| δαβ (3.23)
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Identities (3.20) and (3.22) allow to write d
dt

(
u, Ĝu

)
as

d

dt

(
u, Ĝu

)
=

(
u,

[
ĜJ̃ + J̃∗Ĝ

]
u
)

= (3.24)

= −2<

∑
α,β

(c · aαβ)+ |u|
2
α +

∑
α,β

(c · aαβ)− u∗αuβ

 =

= −2
∑
α,β

(c · aαβ)+ |uα|2 −
∑
α,β

(c · aαβ)−
(
u∗αuβ + uαu∗β

)
=

= −
∑
α,β

{
(c · aαβ)+

(
|u|2α + |u|2β

)
− (c · aαβ)+

(
u∗αuβ + uαu∗β

)}
=

= −
∑
α,β

(c · aαβ)+ |uα − uβ|2 = −1
2

∑
α,β

|c · aαβ | |uα − uβ|2 ≤ 0.

Therefore
(
u (t) , Ĝu (t)

)
≤

(
u (0) , Ĝu (0)

)
for all t ≥ 0. The definition

of Ĝ in (3.23) yields the bounds(
u, Ĝu

)
maxα |Tα|

≤ (u, u) ≤

(
u, Ĝu

)
minα |Tα|

for all u ∈ CN .

This implies that

√
(u (t) , u (t)) ≤

√
maxα |Tα|
minα |Tα|

√
(u (0) , u (0)) for all t ≥ 0.

ut

3.4 Stability Analysis of the MUSCL Scheme : General Setting

In contrast to the first order operator (3.6), the MUSCL operator (3.7) de-
pends on the slope reconstruction and its stencil. The question of eigenvalue
stability of the MUSCL operator (3.7) on irregular grids can be formulated
in the following way. Are there consistent reconstruction coefficients sαβ

in the sense of (2.19) so that for any velocity c ∈ Rd there is a positive def-
inite matrix G with the property that GJ + J∗G is negative semi-definite?
The reconstruction should provide linear stability regardless of the convec-
tion velocity. This is necessary for applications to gas dynamics where the
velocity is not fixed.

Unfortunately, in the case of the MUSCL operator (3.7), the simple di-
agonal matrix Ĝ (3.23) with elements ĝαβ = |Tα| δαβ does no longer give
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a general stability result. The numerical evidence shows that ĜJ + J∗Ĝ is
in general not negative semidefinite on unstructured grids, even when the
MUSCL operator (3.7) is stable. It turns out to be very difficult to find a
matrix G that could give a rigorous proof of eigenvalue stability for the
MUSCL operator (3.7).

Despite this fact, it is interesting and very important to have a strategy at
hand that helps to design a MUSCL scheme with the best possible stability
properties. Consider the increase of the quadratic energy

(
u, Ĝu

)
given by

d

dt

(
u, Ĝu

)
=

(
u,

[
ĜJ + J∗Ĝ

]
u
)

(3.25)

with the diagonal matrix Ĝ from (3.23). The goal is to look for reconstruc-
tion coefficients that make (3.25) as small as possible. This approach does
not give a general criterion for the eigenvalue stability of (3.7) but it allows
to identify the consistent reconstruction methods that lead to the smallest
increase of

(
u, Ĝu

)
.

With the use of the identities (3.20), (3.21) and (3.22), expression (3.25)
becomes

d

dt

(
u, Ĝu

)
=

∑
α,β

(c · aαβ)+

[
− |uβ − uα|2 +

+2
∑

γ

<
{(

u∗β − u∗α
)
kαβ · sαγ (uγ − uα)

}]
. (3.26)

The form of the quadratic expression (3.26) justifies the introduction of

Definition 3.7 ( Local Reconstruction Map) Let mα be the number of
cells in the reconstruction stencil of cell Tα and let lα be its number of
first neighbors, i.e. its number of faces. The local reconstruction map of cell
Tα is the lα ×mα matrix Rα with coefficients r

(α)
βγ = kαβ · sαγ .

Remark 3.8 The local reconstruction map determines how the fluctuations
uγ − uα translate into the fluctuations uαβ − uα where uαβ is the recon-
structed value at the interface between cells Tα and Tβ . In matrix notation,
Rα can be written as Rα = KαSα where Kα is the lα×d matrix with rows
kαβ

Kt
α =

[
kαβ1 ,kαβ2 , . . . ,kαβlα

]
(3.27)

and Vα , {β1, . . . , βlα} are the first neighbors of cell Tα. It is important
not to confound the local reconstruction matrix Rα = KαSα with the slope
reconstruction matrix Sα. The matrix Rα has the valuable properties to be
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dimensionless and invariant under scalings of the mesh. It describes the
local reconstruction geometry in cell Tα.

With Definition 3.7 and the notation δuαβ = uβ−uα, (3.26) can be written
as a sum

d

dt

(
u, Ĝu

)
=

N∑
α=1

(Θα (δu) + Φα (δu)) (3.28)

where Θα (δu) and Φα (δu) are defined as

Θα (δu) , −
∑
β

(c · aαβ)+ |δuαβ |2 ≤ 0 (3.29)

Φα (δu) , 2
∑
β

∑
γ

(c · aαβ)+<
{

δu∗αβr
(α)
βγ δuαγ

}
(3.30)

for each cell Tα.
The Definitions (3.29) and (3.30) show clearly that any increase of the

expression
(
u, Ĝu

)
can only come from the terms Φα (δu) in (3.28). Fur-

thermore, Φα (δu) depends linearly on the entries r
(α)
βγ of the local recon-

struction map Rα in each cell. It is also very important to note that the
reconstruction matrix Rα of cell Tα and with it the reconstruction coeffi-
cients sαγ in cell Tα occur exclusively in the term Φα associated with cell
Tα. In this way the reconstruction coefficients that minimize (3.28) can be
chosen by minimizing the Φα separately for each cell. Before the presenta-
tion of the main results in Subsection 3.6, we give a brief overview of the
one-dimensional case.

3.5 Stability Analysis of the MUSCL Scheme : the One-Dimensional Case.

This subsection contains a short treatment of the one-dimensional case. Its
subject is the stability analysis of the MUSCL scheme in one space dimen-
sion when it is applied to the convection equation

∂tu + c∂xu = 0 ; c > 0 (3.31)

on an irregular periodic grid of size N . For this subsection only, we adopt a
specific notation that better suits the one-dimensional case, see Fig. 3.1. The
cells are indexed by j ∈ {1, . . . , N} with the convention that N + 1 = 1
to handle the periodicity of the grid. In cell Tj we define a dimensionless
volume αj > 0 by the relation αj = 1

h |Tj | where h is a length scale. In
one space dimension, the distance between the barycenters of the adjacent
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b b brs rs

|Tj | = αjh |Tj+1| = αj+1h

βjh

xj xj+1

Figure 3.1: The cells Tj , Tj+1, with barycenters xj , xj+1 and lengths αjh, αj+1h.

cells Tj and Tj+1 is hj,j+1 = 1
2 (|Tj |+ |Tj+1|) . A dimensionless distance

βj is defined by βj = 1
hhj,j+1. The βj are related to the αj by the formula

βj =
1
2

(αj + αj+1)

as depicted in Fig. 3.1. In particular the relations hβj−1 = hj−1,j =
−hj,j−1 and βj > 0 hold for all j.

The slope reconstruction matrix defined by (2.21) for reconstruction on
the first neighborhood is the 1× 2 matrix

Sj =
[
sj,j+1 sj,j−1

]
. (3.32)

In one space dimension, the distances between the barycenter of cell Tj and
the barycenters of its left and right faces can be written as functions of the
cell volume

kj,j+1 =
|Tj |
2

=
hαj

2
, kj,j−1 = −|Tj |

2
= −hαj

2
. (3.33)

In this context, the matrix Rj of the local reconstruction map from Defini-
tion 3.7 becomes

Rj =
[
kj,j+1sj,j+1 kj,j+1sj,j−1

kj,j−1sj,j+1 kj,j−1sj,j−1

]
. (3.34)

In the one-dimensional case, the introduction of the coefficients r+
j and r−j

simplifies the notation as follows

r+
j = kj,j+1sj,j+1 = |Tj |

2 sj,j+1 = hαj

2 sj,j+1

r−j = kj,j−1sj,j−1 = − |Tj |
2 sj,j−1 = −hαj

2 sj,j−1

. (3.35)

This allows to express the reconstructed values at the cell interfaces as

u+
j = uj,j+1 = uj + r+

j (uj+1 − uj) + r−j (uj − uj−1)
u−j = uj,j−1 = uj − r+

j (uj+1 − uj)− r−j (uj − uj−1)
. (3.36)
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With the help of this notation, the one-dimensional semi-discrete MUSCL
scheme in (3.5) is reduced to the equation

duj (t)
dt

= − c

|Tj |

(
u+

j (t)− u+
j−1 (t)

)
. (3.37)

The consistency relation (2.19) for the slope reconstruction becomes

sj,j+1hj,j+1 + sj,j−1hj,j−1 = 1 (3.38)

In the one-dimensional notation, equation (3.38) translates into

βjr
+
j + βj−1r

−
j =

1
2
αj . (3.39)

Two commonly used slope reconstructions are the least squares reconstruc-
tion

r+
j =

1
2

αjβj

β2
j + β2

j−1

, r−j =
1
2

αjβj−1

β2
j + β2

j−1

(3.40)

and the Green reconstruction

r+
j =

1
4

αj

βj
, r−j =

1
4

αj

βj−1
. (3.41)

See Proposition 2.4 for the least squares reconstruction and Subsection 4.3
for the Green reconstruction.

The matrix of the semi-discrete MUSCL operator J defined by (3.7) has
four non zero entries in each line. They are given by

Jj,j+1 = − c
αjhr+

j

Jj,j = − c
αjh

(
1− r+

j + r−j − r+
j−1

)
Jj,j−1 = − c

αjh

(
−r−j − 1 + r+

j−1 − r−j−1

)
Jj,j−2 = − c

αjhr−j−1

. (3.42)

In the one-dimensional case, the surface vectors aj,j+1 and aj,j−1 are
real numbers with the respective values 1 and −1 and the velocity vector c
is reduced to a real number c. The assumption c > 0 implies (c · aj,j+1)+ =
c and (c · aj,j−1)+ = 0 and the quadratic form (3.28) becomes

d

dt

(
u, Ĝu

)
= c

− N∑
j=1

(uj+1 − uj)
2 +

+2
N∑

j=1

(uj+1 − uj)
(
r+
j (uj+1 − uj) + r−j (uj − uj−1)

) . (3.43)
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The functional (3.43) can also be expressed by

d

dt

(
u, Ĝu

)
= (Qu, u) (3.44)

where Q is derived from J by

Q = ĜJ + J∗Ĝ (3.45)

and Ĝ = diag(α1, ..., αN ) is the diagonal matrix of the dimensionless vol-
umes. A sufficient but not necessary condition for stability is given by

d

dt

(
u, Ĝu

)
= (Qu, u) ≤ 0 . (3.46)

Due to the symmetry of the matrix Q, the condition (3.46) is equivalent to
the condition σ (Q) ⊂ C− for the spectrum σ (Q) of Q.

The case of an equidistant grid is easy to handle, since the spectrum is
available explicitly by a Discrete Fourier Transform.

Proposition 3.9 (Stability of the MUSCL Scheme on Equidistant Grids)
Consider the linear system (3.37) with velocity c > 0 on an equidistant
grid with the same slope reconstruction method in each cell. In this case,
the reconstruction coefficients are the same for all grid cells : r+

j = r+ and
r−j = r− for 1 ≤ j ≤ N . If the two reconstruction coefficients satisfy the
consistency condition

r+ + r− =
1
2

(3.47)

then the real and imaginary parts of the eigenvalues of the MUSCL operator
J (3.42) are given explicitly by

< (λk) = −2c
h r−

(
1− cos

(
2πk
N

))2

= (λk) = − c
h sin

(
2πk
N

) [
1 + 2r−

(
1− cos

(
2πk
N

))] (3.48)

where −N
2 < k ≤

[
N
2

]
. This shows that in the equidistant setting with a

positive velocity c > 0 the one-dimensional MUSCL scheme is stable if and
only if r− ≥ 0.

ut

Remark 3.10 Note that for equidistant meshes the stability of the semi-
discrete MUSCL scheme (3.37) can also be deduced from the sufficient
condition (3.46) by means of the Geršgorin location of the eigenvalues,
see Theorem 3.3. Furthermore, the stability result of Proposition 3.9 can
be extended to multidimensional cartesian grids by the use of Kronecker
products, [28, Chapter 4].
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In the case of an irregular periodic grid the full stability analysis is a difficult
task, since it amounts to prove that the spectrum of J lies in the left-half
complex plane. We limit ourselves to the following numerical observations.

– The numerical computation of the spectrum of the matrix J defined by
(3.42) has been performed with the least square reconstruction (3.40)
and with the Green reconstruction (3.41) for a series of grids with ran-
dom cell length from N = 4 to N = 250. The spectral abscissa max(<(λ))
has been shown to satisfy the stability condition max<(λ) ≤ 0 up to
the numerical accuracy of the computer. This allows to infer that the
semi-discrete MUSCL scheme with these two slope reconstructions is
stable regardless of the shape of the grid. The computation of the spec-
tra has been performed independently in MATLAB and in MAPLE.

– On the contrary, the sufficient stability condition (3.46) is clearly vio-
lated on numerous simple examples. This means that the energy

E(t) =
N∑

j=1

|Tj | |uj (t)|2

can grow locally for some solution t 7→ u (t) even if the scheme (3.37) is
stable. In other words, the standard energy E(t) is actually not sufficient
to assess the stability of the scheme. This is a classical drawback of
any energy method : in the absence of knowledge of the correct energy
function one cannot conclude.

3.6 Minimization Properties of the Least-Squares Method

In this section, we return to unstructured grids in arbitrary dimension and
ask if it is possible to identify a criterion for the reconstruction coefficients
such that the increase of the energy given by (3.28)

d

dt

(
u, Ĝu

)
=

N∑
α=1

(Θα (δu) + Φα (δu))

becomes small. The discussion at the end of section 3.4 shows that any
increase of

(
u, Ĝu

)
can only be caused by the terms Φα (δu) in (3.28).

Furthermore, the terms Θα (δu) in (3.28) are independent of the slope re-
construction and the terms (3.30)

Φα (δu) , 2
∑
β

∑
γ

(c · aαβ)+<
{

δu∗αβr
(α)
βγ δuαγ

}
depend linearly on the entries r

(α)
βγ of the local reconstruction map Rα of

the cell Tα.
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The general form (2.23) of the consistent slope reconstruction shows
that the local reconstruction map can be written as

Rα = KαSα = Kα

(
S̃α + ΛαBα

)
(3.49)

where S̃α =
(
Ht

αHα

)−1
Ht

α is the least squares reconstruction matrix and
Λα is an arbitrary parameter matrix that represents the degrees of freedom
of the consistent slope reconstruction. Recall that the matrix Bα is a max-
imum rank solution of (2.24) that satisfies in particular BαS̃t

α = 0 and
S̃αBt

α = 0.
Equation (3.49) suggests to choose in each cell Tα the matrix Λα in

such a way that the term Φα (δu) becomes as small as possible. However,
a direct minimization of (3.30) for fixed values of δu and c encounters two
problems.

1. First, it is not obvious that the infimum of Φα (δu) with regard to Λα

exists because Φα (δu) may not be bounded from below as a function of
Λα.

2. Second, if there is a matrix Λα that minimizes Φα (δu) for given values
δu and c then Λα depends itself on these specific values of the solution
δu and the velocity c.

To overcome these obstacles, we propose an alternative criterion for the
slope reconstruction that makes an approximate and qualitative statement
about the influence of the slope reconstruction on the increase of the energy(
u, Ĝu

)
. This criterion is based on matrix norms of the local reconstruction

map. We stress that we use the term matrix norm for any norm on the space
of complex matrices Mk,n (C) seen as a linear vector space. This means that
the norms used hereafter do not necessarily satisfy the estimate ‖AB‖ ≤
‖A‖ ‖B‖.

The criterion is given by the

Definition 3.11 (Optimal Consistent Slope Reconstructions) Let ‖.‖M be
a matrix norm on the space of matrices Mk,n (C). A consistent slope recon-
struction given by a matrix S̆α is called optimal with regard to the norm
‖.‖M if it is a solution of the minimization problem∥∥∥KαS̆α

∥∥∥
M

= min
{∥∥∥KαSα

∥∥∥
M

∣∣∣ SαHα = Id×d , Sα ∈ Md,m (R)
}

.

(3.50)

For any matrix norm, the minimization problem (3.50) of Definition 3.11 is
a problem of convex optimization. Indeed, the function

Md,m−d (C) 3 Λα 7−→
∥∥∥Kα

(
S̃α + ΛαBα

)∥∥∥
M
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is a continuous convex function that is bounded from below. Furthermore,
any minimizer Λα of ‖KαSα‖M is independent of the solution δu and the
velocity c. Therefore, this approach seems better suited for a generalization
to applications where the fluid velocity is not fixed. It is also noteworthy
that this minimization problem is invariant under scalings of the grid. The
importance of this criterion is underlined by the

Remark 3.12 Consider the criterion of Definition 3.11 for the spectral norm
‖.‖2. Denote by Vα the set of cell indexes of the direct neighbors and by
Wα the set of cell indexes in the reconstruction stencil. Furthermore, denote
by uαβ the reconstructed values at the cell interfaces. If ‖KαSα‖2 > 1, then
there exists a u = (u1, . . . , uN ) such that∑

β∈Vα

|uαβ − uα|2 >
∑

β∈Wα

|uβ − uα|2 .

This means that the fluctuations between the values at the faces and at the
center of the cell become larger in the quadratic mean than the fluctuations
between the cell neighbors. Such an undesirable behaviour has been ob-
served for the first neighborhood reconstruction on tetrahedral grids, see
Section 4.5. This finding is a motivation to make ‖KαSα‖2 as small as
possible. �

However, the new criterion has the problem that any minimizer Λα of
‖KαSα‖M depends on the choice of the matrix norm ‖.‖M. For this rea-
son, the new criterion seems only pertinent if there is a common minimizer
Λα of ‖KαSα‖M for at least a family of norms. An important family of
matrix norms is given by the

Definition 3.13 (Unitarily Invariant Matrix Norms) A matrix norm ‖.‖M
is called unitarily invariant if ‖UAV ‖M = ‖A‖M for all matrices A ∈
Mk,n (C) and all unitary matrices U ∈ Mk (C) and V ∈ Mn (C).

The family of unitarily invariant matrix norms includes the Frobenius norm,
the spectral norm, the trace norm, the Ky Fan norms etc., see [28]. An
example of a matrix norm that is not unitarily invariant is given by

‖A‖L(2,∞) , sup
1≤α≤l

sup
‖z‖=1

∣∣∣∣∣∣
∑

1≤β≤m

aαβzβ

∣∣∣∣∣∣ (3.51)

= sup
1≤α≤l

√ ∑
1≤β≤m

|aαβ |2 .

These definitions allow to prove the
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Theorem 3.14 (Minimization Property of the Least Squares Reconstruc-
tion) Consider the local reconstruction map Rα = KαSα in cell Tα where
the slope reconstruction matrix Sα satisfies the consistency condition (2.22).
Then the least squares reconstruction matrix S̃α minimizes the following
functions of Rα = KαSα under the constraint of consistency SαHα =
Id×d.

(i) S̃α minimizes each of the singular values of KαSα.
(ii) S̃α minimizes all unitarily invariant matrix norms of KαSα. In particu-

lar, S̃α minimizes the spectral norm, the Frobenius norm, the trace norm
and all Ky Fan norms of KαSα.

(iii) S̃α minimizes the norm (3.51) of KαSα. It minimizes further any matrix
norm of KαSα that can be expressed as ‖A‖M = F (AA∗) where F is
a function of Hermitian matrices such that F (P ) ≤ F (P + Q) for all
Hermitian P and all positive semidefinite Q.

Proof : As explained in Section 2.2, a general consistent reconstruction can
be written as Sα = S̃α+ΛαBα where S̃α is the least squares reconstruction
matrix, the matrix Bα is a maximal rank solution of BαHα = 0 and the ma-
trix Λα represents the degrees of freedom of the consistent reconstruction.
The singular values of KαSα are the square roots of the eigenvalues of the
matrix

KαSαSt
αKt

α =
(
KαS̃α + KαΛαBα

) (
S̃t

αKt
α + Bt

αΛt
αKt

α

)
(3.52)

The least squares reconstruction matrix is given by S̃α =
(
Ht

αHα

)−1
Ht

α

and fulfills therefore S̃αBt
α = 0. Consequently, the matrix (3.52) is a sum

of two positive semidefinite matrices

KαSαSt
αKt

α = KαS̃αS̃t
αKt

α + KαΛαBαBt
αΛt

αKt
α . (3.53)

The proof of item (i) uses Corollary 4.4.3 on page 182 in [27] : Let P
and Q be Hermitian matrices and let Q be positive semidefinite. Assume
that the eigenvalues of P and P + Q are arranged in increasing order and
denote by λk (P ) and λk (P + Q) the k-th eigenvalues of P and P + Q.
Then λk (P ) ≤ λk (P + Q). This proves that the k-th eigenvalues of the
matrices in (3.53) satisfy

λk

(
KαS̃αS̃t

αKt
α

)
≤ λk

(
KαS̃αS̃t

αKt
α + KαΛαBαBt

αΛt
αKt

α

)
. (3.54)

The vector of the singular values of KαSα is the vector of the square roots
of the eigenvalues of KαSαSt

αKt
α arranged in increasing order. Therefore

(3.54) shows that the k-th singular value of KαSα has a minimum at Λα =
0, i.e. at the least squares reconstruction matrix. This proves the first item
of Theorem 3.14.
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The proof of the second item (ii) makes use of Definition 3.5.17 on page
209 and Theorem 3.5.18 on page 210 in [28]. For any unitarily invariant ma-
trix norm, and in particular for the norms cited above, there is a symmetric
gauge function such that the norm can be expressed as the gauge function
of the vector of singular values. A symmetric gauge function is moreover a
monotone vector norm. As the least squares reconstruction minimizes each
entry of the vector of singular values of KαSα among the consistent recon-
structions, it minimizes also the gauge function of the singular values and
by consequence the matrix norm.

The proof of the third item proceeds in the same way. The norm (3.51)
can be written as

‖KαSα‖L(2,∞) = sup
β∈Vα

sup
‖z‖=1

∣∣∣∣∣∑
γ

kαβ · sαγzγ

∣∣∣∣∣ (3.55)

= sup
β∈Vα

√ ∑
1≤γ≤mα

(
KαS̃α + KαΛαBα

)
βγ

(
S̃t

αKt
α + Bt

αΛt
αKt

α

)
γβ

.

As shown in the proof of the first item, expression (3.55) takes the following
form

‖KαSα‖L(2,∞) = sup
β∈Vα

√(
KαS̃αS̃t

αKt
α

)
ββ

+ (KαΛαBαBt
αΛt

αKt
α)ββ

that has a minimum at Λα = 0, that is at the least squares reconstruction
matrix. This proves the minimization property for the norm (3.51). Now
consider any matrix norm of the form ‖A‖M = F (AA∗) with a function
F having the property stated in item (iii). The same argument as before
shows that∥∥∥KαS̃α

∥∥∥
M

= F
(
KαS̃αS̃t

αKt
α

)
≤ F

(
KαS̃αS̃t

αKt
α + KαΛαBαBt

αΛt
αKt

α

)
which proves that the matrix norm in question has a minimum at the least
squares reconstruction.

ut

The Theorem 3.14 shows that the least squares reconstruction is a com-
mon minimizer of the norm of the local reconstruction map for a certain
family of matrix norms. For these norms, the least squares reconstruction
turns out to be optimal in the sense of the Definition 3.11.

The next step is to investigate the influence of the reconstruction stencil
on the local reconstruction map and on the stability of the MUSCL operator
(3.7). The following result shows the influence of an extension of the re-
construction stencil on the norms of the local reconstruction map KαSα in
the case of the least squares reconstruction.
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Theorem 3.15 (Influence of the Stencil on the Least Squares Recon-
struction) Consider a fixed reconstruction stencil in cell Tα and denote
by Hα the corresponding geometric matrix (2.20) of rank d. Let S̃α =(
Ht

αHα

)−1
Ht

α denote the slope reconstruction matrix of the least squares
method in cell Tα for that stencil.

Consider an extension of the reconstruction stencil of cell Tα by adding
a number l ≥ 1 of cells with indexes {β1, . . . , βl} to the stencil. Let Ȟα

denote the l× d matrix whose rows are the l new vectors {hαβ1 , . . . ,hαβl
}

defined by hαβ = xβ − xα so that the new geometric matrix is given by

Ĥt
α =

[
Ht

α

∣∣ Ȟt
α

]
.

Denote by Ŝα =
(
Ĥt

αĤα

)−1
Ĥt

α the matrix of the least squares slope
reconstruction on the extended neighborhood. Then the following results
hold.

(i) The singular values of KαŜα and KαS̃α satisfy the estimates

σj

(
KαŜα

)
≤ σj

(
KαS̃α

)
, 1 ≤ j ≤ d .

Let ‖.‖M be any unitarily invariant matrix norm, the norm (3.51) or any
norm that can be written as ‖A‖M = F (AA∗) where F is a function
of Hermitian matrices satisfying F (P ) ≤ F (P + Q) for all Hermitian
P and all positive semidefinite Q. Then KαŜα and KαS̃α satisfy the
estimate ∥∥∥KαŜα

∥∥∥
M
≤

∥∥∥KαS̃α

∥∥∥
M

.

(ii) Suppose further that the matrix Ȟα has full rank d. If σj

(
KαS̃α

)
> 0

for any 1 ≤ j ≤ d, then

σj

(
KαŜα

)
< σj

(
KαS̃α

)
.

Let ‖.‖M be any matrix norm cited in item (i). For the norms that can be
written in the form ‖A‖M = F (AA∗) suppose that the strict estimate
F (P ) < F (P + Q′) holds for all Hermitian P and all positive definite
Q′. Then KαŜα and KαS̃α satisfy the strict estimate∥∥∥KαŜα

∥∥∥
M

<
∥∥∥KαS̃α

∥∥∥
M

.

Proof : The proof is based on the Sherman-Morrison-Woodbury matrix
identity, see for example [21, page 3] or [30, page 124]. Let A, U , C and
V denote complex matrices of the respective sizes n× n, n× k, k× k and
k × n. Then

(A + UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1
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provided that the inverted matrices exist.
First, we prove properties (i) and (ii) for the singular values. In the case

of the least squares reconstruction, the singular values of the matrix KαS̃α

are given by the square roots of the eigenvalues of the matrix

KαS̃αS̃t
αKt

α = Kα

(
Ht

αHα

)−1
Kt

α . (3.56)

It is therefore sufficient to prove each statement for the eigenvalues of the
real symmetric matrix (3.56).

If Ȟα is the matrix whose rows are the new vectors {hαβ1 , . . . ,hαβl
},

then the matrix
(
Ht

αHα

)−1 in (3.56) is replaced by(
Ĥt

αĤα

)−1
=

(
Ht

αHα + Ȟt
αȞα

)−1
. (3.57)

The matrix Kα stays the same because the number of faces is unchanged.
Application of the Woodbury matrix identity to (3.57), followed by left
multiplication by Kα and right multiplication by Kt

α gives the relation

Kα

(
Ht

αHα

)−1
Kt

α −Kα

(
Ht

αHα + Ȟt
αȞα

)−1
Kt

α = (3.58)

= Kα

(
Ht

αHα

)−1
Ȟt

α

(
I + Ȟα

(
Ht

αHα

)−1
Ȟt

α

)−1
Ȟα

(
Ht

αHα

)−1
Kt

α .

The rest of the proof proceeds in the same way as the proof of Theorem
3.14. The application of Corollary 4.4.3 on page 182 in [27] to equation
(3.58) shows that the k-th eigenvalues of the matrices in (3.58) satisfy

λk

(
Kα

(
Ht

αHα + Ȟt
αȞα

)−1
Kt

α

)
≤ λk

(
Kα

(
Ht

αHα

)−1
Kt

α

)
. (3.59)

If Ȟα has full rank d, the matrix on the right hand side of (3.58) is positive
definite on the orthogonal complement of the null space of Kt

α because the
matrix(

Ht
αHα

)−1
Ȟt

α

(
I + Ȟα

(
Ht

αHα

)−1
Ȟt

α

)−1
Ȟα

(
Ht

αHα

)−1

is in this case positive definite on Rd. All three matrices in (3.58) share the
same null space that is equal to the null space of Kt

α. It is now sufficient
to apply Weyl’s Theorem, see [27, 4.4.1 on page 181], to the restriction of
the Hermitian matrices in (3.58) to the orthogonal complement of the null
space of Kt

α. This proves that

λk

(
Kα

(
Ht

αHα + Ȟt
αȞα

)−1
Kt

α

)
< λk

(
Kα

(
Ht

αHα

)−1
Kt

α

)
(3.60)

for all eigenvalues λk that are strictly positive. This argument demonstrates
the statement (ii) for the singular values.
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The proof for the singular values implies immediately that properties (i)
and (ii) hold for all unitarily invariant norms as shown in Theorem 3.14.
Now suppose that a matrix norm can be expressed as ‖A‖M = F (AA∗)
where F is a function of Hermitian matrices such that F (P ) ≤ F (P + Q)
for Hermitian P and positive semidefinite Q and F (P ) < F (P + Q) for
Hermitian P and positive definite Q. Then properties (i) and (ii) follow
directly from equation (3.58).

Finally, in the case of the least squares reconstruction, the norm (3.51)
is given by the formula∥∥∥KαS̃α

∥∥∥
L(∞,2)

= sup
β∈Vα

√
kt

αβ (Ht
αHα)−1 kαβ . (3.61)

According to the Woodbury matrix identity, the equation(
Ht

αHα

)−1 −
(
Ht

αHα + Ȟt
αȞα

)−1 = (3.62)

=
(
Ht

αHα

)−1
Ȟt

α

(
I + Ȟt

α

(
Ht

αHα

)−1
Ȟt

α

)−1
Ȟα

(
Ht

αHα

)−1

holds. This proves statement (i) because

kt
αβ

(
Ht

αHα + Ȟt
αȞα

)−1
kαβ ≤ kt

αβ

(
Ht

αHα

)−1
kαβ (3.63)

in (3.61). If Ȟα has full rank d the matrix on the right hand side of equation
(3.62) becomes positive definite. This implies

kt
αβ

(
Ht

αHα + Ȟt
αȞα

)−1
kαβ < kt

αβ

(
Ht

αHα

)−1
kαβ (3.64)

for all vectors kαβ which proves the statement (ii) for the norm (3.51).

ut

3.7 Practical Conclusions

The Definition 3.11 introduces a new criterion to evaluate the impact of the
piecewise linear slope reconstruction on the stability of the MUSCL scheme.
This criterion defines an approximate and qualitative measure to identify
the reconstruction methods that are best suited to give a stable MUSCL
operator (3.7). The criterion uses a local property in each cell, the local
reconstruction map given by Definition 3.7. The subsequent analysis and
the theorems of Subsection 3.6 provide two practical conclusions for the
choice and design of reconstruction methods and their stencils.
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1. Theorem 3.14 shows that the least squares slope reconstruction is a min-
imizer of the specific criterion of Definition 3.11 in a certain family of
norms. This result suggests in particular that if the least squares slope
reconstruction gives an unstable scheme, then any other consistent slope
reconstruction is also very likely to lead to an unstable scheme.

2. The result of Theorem 3.15 suggests that a larger reconstruction sten-
cil should lead to a more robust scheme. In section 4, this hypothesis
is tested numerically and it turns out to be particularly true for three-
dimensional meshes.

The purpose of Section 4 is to support and complement these conclusions
by explicit numerical computation of spectra.

4 Computation of Spectra of MUSCL Operators in Two and Three
Dimensions

The theoretical results of Subsection 3.6 lead to practical recommendations
for the slope reconstruction of the MUSCL scheme. The purpose of this
section is to underpin and complete these conclusions by the numerical
computation of spectra of operator (3.7) on a range of unstructured and
structured meshes. One of the main goals is to provide evidence for a rela-
tionship between the local reconstruction map given by Definition 3.7 and
the eigenvalue stability of the MUSCL operator (3.7).

4.1 Description of the Test Cases

To isolate the influence of the mesh type, the reconstruction method and
the reconstruction stencil on the stability of the MUSCL operator (3.7) it
is suitable to consider the linear advection equation (3.1) in the simplest
setting, i.e. on a square in two dimensions and on a cube in three dimensions
with periodic boundary conditions. For each test case, a program written in
MAPLE constructs the matrix of the operator J in (3.7) and computes its
spectrum by standard eigenvalue algorithms. In addition, it determines for
each cell Tα the value of ‖Rα‖L(2,∞) = ‖KαSα‖L(2,∞) and computes the
average, median, minimum and maximum values and the 90th, 95th and
99th percentile of ‖Rα‖L(2,∞) for each mesh.

The numerical criterion to identify unstable discretizations is the spec-
tral abscissa of J , defined by

ωJ = max {< (λ)|λ ∈ σ (J)} .

According to proposition (3.1), it is necessary for stability that ωJ ≤ 0.
Whenever this is false, the operator is unstable in the sense of Definition
3.2.
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In two dimensions, the test cases comprise four purely triangular meshes,
four hybrid meshes with triangular and quadrilateral elements and four
meshes obtained by deformation of uniform cartesian grids. In three dimen-
sions, the test cases consist of four purely tetrahedral meshes, four hybrid
grids with tetrahedra, pyramids and prismatic layers at the boundaries and
four deformed uniform cartesian meshes. An equivalent number of uniform
cartesian grids allow the comparison with the regular case, in two as well
as in three dimensions.

– On the first neighborhood we use the least squares method, (see Propo-
sition 2.4 above), as well as a method based on Green’s Theorem and
explained in Subsection 4.3.

– On the second neighborhood we test the least squares method and the
second order gradient reconstruction explained in Subsection 4.4.

All test cases have the fixed advection velocities c = 1√
8

(
−
√

5,
√

3
)

in

two dimensions and c = 1√
14

(1,−3, 2) in three dimensions.

4.2 Definition of Curved Faces

In three dimensions, the deformed cartesian meshes contain curved faces
as explained in Remark 2.1. In this case, the face Aαβ and its barycenter
xαβ are defined as follows. Let {v1, . . . ,vl} be the vertices shared by two
adjacent cells Tα and Tβ . Assume {v1, . . . ,vl} to be ordered so that the
segments {v1v2,v2v3, . . . ,vlv1} form a closed path. Set vl+1 , v1 and
choose an arbitrary point p. If the face Aαβ is defined as the union of the l

triangles A(i)
αβ = pvivi+1, then

|Aαβ | (xαβ − p) =
∫
Aαβ

(x− p) dx (4.1)

=
l∑

i=1

∫
A(i)

αβ

(x− p) dx =
l∑

i=1

∣∣∣A(i)
αβ

∣∣∣ 1
3

[(vi − p) + (vi+1 − p)] .

Setting xαβ = p gives the implicit equation

l∑
i=1

∣∣∣A(i)
αβ

∣∣∣ 1
3

[(vi − xαβ) + (vi+1 − xαβ)] = 0 (4.2)

that can be solved for xαβ by an iterative process. The resulting face Aαβ

is the union of the l triangles A(i)
αβ = xαβvivi+1. As explained in Remark

2.1, the face normal aαβ is independent of the choice of p.
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4.3 Green Reconstruction

In this subsection, we describe a reconstruction method based on Green’s
Theorem, [38]. It is consistent for grids with curved faces. It requires the
definition of the orthogonal projection jαβ of kαβ on hαβ , see Fig. 2.1. It
is further useful to define the auxiliary point yαβ = xα + jαβ . The idea
is to consider a linear function v (x) = vα + σ · (x− xα) and to derive a
formula for its gradient σ by means of Green’s Theorem∫

Tα

∇v (x) dx =
∑
β

∫
Aαβ

ναβ (x) v (x) dσ (4.3)

that v must satisfy. In this way, the resulting gradient formula is consistent
by definition. The linearity of v implies ∇v (x) = σ, v (x) = v

(
yαβ

)
+

σ ·
(
x− yαβ

)
and vα = v (xα) where vα is the mean value of v over the

cell Tα. The value v
(
yαβ

)
satisfies

v
(
yαβ

)
= v

(
xα + jαβ

)
= v (xα) +

∥∥jαβ

∥∥
‖hαβ‖

(v (xβ)− v (xα)) . (4.4)

Equation (4.3) becomes

|Tα|σ =
∑
β

aαβvα +
∑
β

aαβ

∥∥jαβ

∥∥
‖hαβ‖

(vβ − vα) +

+
∑
β

∫
Aαβ

ναβ (x)
[
σ ·

(
x− yαβ

)]
dσ . (4.5)

The first term on the right hand side of (4.5) is zero due to (2.3). The nota-
tion yαβ − xα = jαβ allows to write the identity

|Tα|σ =
∫
Tα

∇ [σ · (x− xα)] dx = (4.6)

=
∑
β

∫
Aαβ

ναβ (x)
[
σ ·

(
x− yαβ + yαβ − xα

)]
dσ

=
∑
β

aαβ

(
σ · jαβ

)
+

∫
Aαβ

ναβ (x)
[
σ ·

(
x− yαβ

)]
dσ .

Insertion of (4.6) in (4.5) and the collinearity of jαβ and hαβ give the linear
relation between σ and the vector δv with components vβ − vα∑

β

∥∥jαβ

∥∥
‖hαβ‖

(aαβ ⊗ hαβ) σ =
∑
β

∥∥jαβ

∥∥
‖hαβ‖

aαβ (vβ − vα) . (4.7)



36 F. Haider et al.

The definition

n′αβ =

∥∥jαβ

∥∥
‖hαβ‖

aαβ (4.8)

simplifies (4.7) and results in∑
β

(
n′αβ ⊗ hαβ

)
σ =

∑
β

n′αβ (vβ − vα) . (4.9)

Finally, the definition of the matrix N ′
α with row vectors n′αβ allows to

write the Green slope reconstruction formula (4.9) in matrix form as

σ = Sgr
α δv =

(
N ′t

α Hα

)−1
N ′t

α δv . (4.10)

4.4 Second Order Reconstruction

An alternative reconstruction method can be defined by the requirement
that the gradient reconstruction be second order accurate. Let h denote the
maximum cell diameter of the mesh and v be a sufficiently smooth function.
A Taylor expansion of the mean value vα of v on cell Tα gives

vα =
1
|Tα|

∫
Tα

v (x) dx = (4.11)

1
|Tα|

∫
Tα

[
v (xα) +

1
2

(x− xα)t ∇2v
∣∣
xα

(x− xα) + O
(
h3

)]
dx

where∇2v is the second derivative of v. In (4.11), the linear term in x−xα

is zero because xα is the barycenter of the cell Tα. With the definition of
the symmetric matrix

Xα =
1
|Tα|

∫
Tα

(x− xα)⊗ (x− xα) dx (4.12)

the expansion (4.11) becomes

vα =
[
v (xα) +

1
2

tr
(
Xt

α ∇2v
∣∣
xα

)
+ O

(
h3

)]
(4.13)

Insertion of (4.13) in the general slope reconstruction (2.17)

σα =
∑
β

sαβ (vβ − vα)
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Table 4.1: Summary of Test Results
Dimension Reconstruction Stencil Instability

2D Least-Squares First Neighborhood No
2D Green First Neighborhood Yes, but small
2D Least-Squares Second Neighborhood No
2D Second Order Second Neighborhood No
3D Least-Squares First Neighborhood Yes
3D Green First Neighborhood Yes
3D Least-Squares Second Neighborhood No
3D Second Order Second Neighborhood Yes

and expansion of v (xβ) at xα results in

σα =
∑
β

sαβ

[
∇v|xα

hαβ +
1
2
ht

αβ ∇2v
∣∣
xα

hαβ (4.14)

+
1
2

tr
(
Xt

β ∇2v
∣∣
xα

)
− 1

2
tr

(
Xt

α ∇2v
∣∣
xα

)
+ O

(
h3

)]
.

The second order accuracy requirement

σα = ∇v|xα
+ O

(
h2

)
leads to the consistency condition (2.19) and to the second order accuracy
condition ∑

β

sαβ ⊗ [hαβ ⊗ hαβ + Xβ −Xα] = 0 . (4.15)

Let mα be the size of the reconstruction stencil. Conditions (2.19) and
(4.15) consist of d2 and 1

2d2 (d + 1) linear equations, respectively. They
can be solved for the mαd reconstruction coefficients if mα = 1

2d (d + 3).
If mα is larger, it is suitable to choose the minimum norm solution of sys-
tems (2.19) and (4.15).

4.5 Numerical Results

Table 4.1 gives a brief summary of the results. In the following, we exam-
ine point by point the observations and bring them into relation with the
theoretical results of Subsection 3.6. Furthermore, we try to highlight the
connection between the values of ‖Rα‖L(2,∞) = ‖KαSα‖L(2,∞) and the
stability of the MUSCL scheme. Recall that the matrix KαSα is invariant
under scaling of the grid. This justifies the comparison of values of KαSα

across different grids.
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Table 4.2: Least-Squares Reconstruction on the First Neighborhood in 2D : spectral
abscissa ωJ and statistics of ‖Rα‖L(2,∞)

grid spectral abscissa average maximum 90th percentile
triangular 1 -0.39404e-9 0.43621 0.54114 0.49491
triangular 2 0.23357e-9 0.42221 0.55833 0.45913
triangular 3 0.18482e-9 0.42372 0.59746 0.46769
triangular 4 0.39867e-10 0.41897 0.55139 0.44342

hybrid 1 0.23081e-9 0.42646 0.63910 0.52123
hybrid 2 0.63704e-10 0.41479 0.62273 0.49499
hybrid 3 -0.16952e-9 0.41004 0.61284 0.49313
hybrid 4 -0.32351e-10 0.40816 0.58758 0.47695

deformed cartesian 1 0.15821e-9 0.42557 0.65135 0.51010
deformed cartesian 2 0.52366e-10 0.43035 0.63335 0.51623
deformed cartesian 3 -0.21041e-9 0.43152 0.63201 0.51990
deformed cartesian 4 -0.32943e-9 0.43145 0.65605 0.51863

1. First neighborhood reconstruction in two dimensions : The numerical
tests did not reveal any instabilities for the least squares reconstruc-
tion on irregular grids in two dimensions. The observed values for the
norm ‖Rα‖L(2,∞) vary between 0.3 and 0.66. In the case of the least
squares reconstruction, this appears to be sufficient to ensure stability
for the chosen velocity direction. Table 4.2 displays the spectral abscis-
sas and the most significant statistics of ‖Rα‖L(2,∞) for this case. In
contrast, the Green reconstruction of Section 4.3 produces a value of
‖Rα‖L(2,∞) ≈ 1.5 at some cells of the first hybrid grid. The resulting
operator is still stable for the velocity c = 1√

8

(
−
√

5,
√

3
)
. However,

for the velocity c = (1, 0), the operator becomes slightly unstable with
a spectral abscissa ωJ ≈ 0.0002. The reason for this is that this grid
presents distorted cells at the corners that create a problem for the Green
reconstruction of Section 4.3. The least squares reconstruction produces
much smaller values of ‖Rα‖L(2,∞) ≈ 0.64 at these cells as predicted
by Theorem 3.14. This particular example supports the conclusion of
Section 3.7 that suggests that the least squares reconstruction is more
likely to lead to robust schemes. The Green method is stable for the
other grids that do not contain such distorted cells.

2. Second neighborhood reconstruction in two dimensions : Both the least
squares and the second order reconstruction generate values of ‖Rα‖L(2,∞)
that are smaller than those for reconstruction on the first neighborhood
as suggested by Theorem 3.15. In the case of the least squares recon-
struction, the values are about 50% smaller than those for the second or-
der reconstruction in line with Theorem 3.14. The corresponding MUSCL
operators are stable on all meshes.
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Table 4.3: Least-Squares Reconstruction on the First Neighborhood in 3D: spectral
abscissa ωJ and statistics of ‖Rα‖L(2,∞)

grid spectral abscissa average maximum 90th percentile
tetrahedral 1 1.6539 0.57376 0.99051 0.67154
tetrahedral 2 -0.46968e-10 0.57143 1.0878 0.67217
tetrahedral 3 5.7716 0.56804 1.0533 0.65979
tetrahedral 4 7.5288 0.57435 1.0888 0.67144

hybrid 1 2.1612 0.54796 1.0820 0.65732
hybrid 2 5.5859 0.55320 1.0702 0.68159
hybrid 3 6.5645 0.53307 1.0962 0.66178
hybrid 4 7.2591 0.52921 1.1547 0.64271

deformed cartesian 1 -0.17017e-9 0.40784 0.54825 0.45403
deformed cartesian 2 0.42669e-10 0.41018 0.54821 0.45641
deformed cartesian 3 -0.63580e-10 0.41188 0.58191 0.46029
deformed cartesian 4 -0.55940e-10 0.41334 0.56309 0.46198

3. First neighborhood reconstruction in three dimensions : This is the case
where both the least squares method and the Green method of Section
3.7 generate unstable schemes on tetrahedral and hybrid grids. Both the
median and the average value of ‖Rα‖L(2,∞) are larger than 0.5 and the
maximum values of ‖Rα‖L(2,∞) are larger than 1. This shows that the
first neighborhood is too small for slope reconstruction on such grids.
Table 4.3 displays the spectral abscissas and the most significant statis-
tics of ‖Rα‖L(2,∞) for the least squares reconstruction. The tetrahedral
grid 2 gives a stable operator but this is only valid for the chosen veloc-
ity direction. Fig. 4.1 shows the spectrum for the tetrahedral grid 3 with
least squares reconstruction. At least two unstable modes are visible on
the right of the imaginary axis.

4. Second neighborhood reconstruction in three dimensions : The least
squares reconstruction leads to values of ‖Rα‖L(2,∞) that are much
smaller than those observed for the first neighborhood reconstruction
as predicted by Theorem 3.15. All instabilities disappear and this obser-
vation is a strong evidence for a link between the values of ‖Rα‖L(2,∞)
and the appearance of unstable eigenmodes. On the other hand, the sec-
ond order reconstruction results in an unstable operator for the second
tetrahedral grid. This method produces comparatively large values of
‖Rα‖L(2,∞) ≥ 1.0 at some cells. This is another example that suggests
that the least squares reconstruction leads to more robust schemes.

5. Cartesian meshes : On uniform cartesian meshes ‖Rα‖L(2,∞) = 0.35355
for the first neighborhood reconstruction in two dimensions and three
dimensions. The MUSCL operators on cartesian meshes are stable. It
is important to note that these meshes have automatically larger stencil
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Figure 4.1: Unstable spectrum for a tetrahedral grid

sizes for the first order reconstruction. Again, this leads to smaller val-
ues of ‖Rα‖L(2,∞) as predicted by Theorem 3.15. This could explain
the absence of unstable eigenmodes on such meshes.

6. Strongly deformed cartesian meshes : On these grids, each cell has
the same number of neighbors as on a cartesian grid. The values of
‖Rα‖L(2,∞) are larger than those of cartesian grids but not enough to
create instabilities. This is a hint that such meshes have a better stability
behavior than tetrahedral and hybrid grids.

7. Influence of the mesh type on stability : The results of the tests seem
to suggest that instabilities emerge only on tetrahedral and prismatic
meshes for the first neighborhood reconstruction. Tetrahedra and prisms
are the cells for which the size of the first neighborhood is smallest and
the value of ‖Rα‖L(2,∞) largest.

8. Number of unstable modes : We notice that the number of unstable
eigenvalues seems to be very small, usually less than one percent of
the total. This is of no help since rounding errors always introduce these
modes into the numerical solution.
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9. Relationship between the local reconstruction map and eigenvalue sta-
bility : The numerical evidence shows a strong correlation between the
values of ‖Rα‖L(2,∞) and the existence of unstable eigenmodes. Un-
stable eigenmodes occur only on grids with cells where ‖Rα‖L(2,∞)
approaches or exceeds 1. Unfortunately, we do not yet have a general
theoretical proof for this relationship.

5 A three-dimensional CFD experiment

A simple three dimensional numerical experiment illustrates the interest
of the preceding stability analysis for compressible fluid dynamics. The
purpose of the experiment is to underline the following points:

1. The instabilities observed for the linear advection equation in Sec. 4.5
arise also in simulations of the nonlinear equations of compressible fluid
dynamics, i.e. the Navier-Stokes or the inviscid Euler equations.

2. The origin of this specific type of instability is a spatial discretization
that is unstable in the sense of definition 3.2, meaning that these insta-
bilities are a linear phenomenon and not genuinely nonlinear.

3. In the presence of such instabilities, the slope limiters are necessary not
only for the monotonicity of the MUSCL scheme but also to suppress
these linear instabilities. The result of the computation depends in this
case very much on the properties of the specific slope limiter.

In order to sustain these statements, it is useful to examine a typical situ-
ation where slope limiters should not be necessary for the stability of the
scheme but should only serve to avoid spurious oscillations. A classical and
very simple example for such a flow is the advection of a contact disconti-
nuity in a three dimensional channel. The experiment has been performed
with the package CEDRE developed at ONERA for applications in aerother-
mochemistry.

The computational domain is a rectangular channel of square section,
given by

Ω =
{
(x, y, z) ∈ R3 | −1 ≤ x ≤ 5 , 0 ≤ y ≤ 0.1 , 0 ≤ z ≤ 0.1

}
.

The initial condition is a contact discontinuity located at x = 0 in the
channel. The discontinuity consists only of a jump in temperature and mass
density, whereas pressure and velocity are uniform. The mesh, shown in fig.
5.1 , is made of N ≈ 900 tetrahedra. The discontinuity evolves along the
positive x axis at a velocity of 100 m

s . The boundary conditions consist of
a subsonic inflow at x = −1, a subsonic outflow at x = 5 and solid walls.

The conserved quantities mass density, momentum and energy are de-
noted by

q = (ρ, ρvx, ρvy, ρvz, ρE)
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Figure 5.1: Tetrahedral grid of a channel; the flow is along direction x

and evolve according to the Euler equations for an ideal compressible gas.
The computation uses a numerical flux of the Roe type and an explicit third
order Runge-Kutta time-stepping scheme. The time step is ∆t = 10−5 and
the CFL number is 0.05.

The propagation of a contact discontinuity at constant velocity behaves
in a manner very similar to a solution of the linear advection equation. As
no shock is involved, the numerical scheme without slope limiters should
at least be stable, even if the lack of monotonicity generates spurious oscil-
lations.

The numerical experiment allows to compare two reconstruction meth-
ods :

1. The least squares gradient reconstruction on the first neighborhood. Ac-
cording to the experiments of Sec. 4.5, this method leads to an unstable
MUSCL discretization of the linear advection equation on tetrahedral
grids.

2. A gradient reconstruction on the second neighborhood that gives a sta-
ble MUSCL discretization on tetrahedral grids.

Fig. 5.2a and 5.2b display the history of the residuals

t 7→ max
Ω

∣∣∣∣dq

dt

∣∣∣∣
using a linear scale for the time and a logarithmic scale for the residuals.
Fig. 5.3a and 5.3b present the history of the different components of the
velocity.

The results for the unstable first neighborhood reconstruction show that
the residuals of ρvy and ρvz which are initially very small grow to reach
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Figure 5.2: History of the residuals of d
dt

[ρ, ρux, ρuy, ρuz, ρE] without slope limiters
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Figure 5.3: History of the minimum and maximum of the velocity without slope limiters

the magnitude of the residual of ρvx after a few hundred time steps. The fact
that the curves of the residuals of ρvy and ρvz are straight lines indicates
that the growth is exponential. This is also visible on the plot of the compo-
nents of the velocity in Fig. 5.3a. When the stable discretization is used, the
residuals as well as the minima and maxima of the velocity stay constant
although no slope limiter is used. On cartesian meshes, both discretization
methods yield a stable solution of this specific problem.

This suggests that the specific type of instability visible in Fig. 5.2a
is caused by an unstable eigenmode of the linear advection equation. At
t = 0, ρvy and ρvz are not completely zero due to rounding errors. As these
components are advected along the x-direction at constant velocity vx, the
unstable eigenmode begins to grow exponentially. In the case of the second
neighborhood reconstruction, there is no instability and the computation
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can be carried out without any kind of nonlinear limitation procedure, see
Fig. 5.2b. The same holds true for structured cartesian grids.

Finally, the computation has been repeated with different slope limiters
available in CEDRE. A recently implemented slope limiter that is based on
the maximum principle of Barth [3,4] is able to contain the linear instability
and to restore the correct solution. However, this is not the case for other
slope limiters that are based on empirical formulas.

A good example for the usefulness of the preceding analysis is the large
eddy simulation of a hot supersonic jet that has been the subject of an ex-
perimental study by Seiner and Ponton [45]. Simulations with CEDRE on
tetrahedral grids were not able to capture the transition of the jet to tur-
bulent flow, whereas simulations on hexahedral grids delivered numerical
results in accordance with the experimental data. However, it was previ-
ously impossible to determine if the problem is caused by the slope limiters
or the gradient reconstruction because the simulation could not be carried
out without slope limiters on tetrahedral grids.

With the stable gradient reconstruction on the second neighborhood,
the computation can be performed with slope limiters active only inside the
nozzle. In this particular setting, the jet becomes turbulent on tetrahedral
grids in the same way as on hexahedral grids. This shows clearly that the
slope limiters are responsible for preventing the transition to turbulence. In
a second step, the result of this particular computation has been used as
a turbulent initial condition for a computation of the jet with the standard
MUSCL discretization using slope limiters. This turbulent initial condition
gives much better results than the non turbulent initial condition. Details
can be found in [24].

6 Conclusion

The subject of this article is the eigenvalue stability of the semi-discrete
equation obtained by a MUSCL discretization of linear advection without
slope limiters. The main purpose of the study is to explore the influence
of the mesh type, the slope reconstruction method and the stencil size on
stability. To isolate the influence of these factors, the stability of the scheme
has been studied without slope limiters.

A general result proves the stability of the first order finite volume dis-
cretization of linear advection on arbitrary meshes. For the MUSCL scheme,
the analysis proceeds in two distinct steps.

1. The paper introduces a new criterion to evaluate the impact of the piece-
wise linear slope reconstruction on the stability of the MUSCL scheme.
This criterion defines an approximate and qualitative measure to iden-
tify the reconstruction methods that are best suited to give a stable
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MUSCL operator (3.7). Such a criterion is indispensable because the ex-
act relationship between the eigenvalues of the MUSCL operator and the
slope reconstruction is too difficult to analyze on general unstructured
grids. The criterion uses a local property in each cell, the local recon-
struction map given by Definition 3.7. This local reconstruction map is a
dimensionless matrix that is invariant under scalings of the grid. If cer-
tain norms of this matrix are smaller for one particular reconstruction
method, then there are good reasons to think that this method leads to a
more robust scheme.

2. The second step consists of looking for an exact minimizer of this cri-
terion. For a certain family of norms, it is possible to identify the least
squares reconstruction as a minimizer as shown in Theorem 3.14. Fur-
thermore, it is possible to show that an extension of the reconstruction
stencil cannot increase the value of the criterion. Under a simple rank
condition, the extension of the stencil leads even to a strictly decreasing
value of the criterion.

The subsequent analysis and the theorems of Subsection 3.6 provide two
practical conclusions for the choice and design of reconstruction methods
and their stencils.

1. Theorem 3.14 shows that the least squares slope reconstruction is a min-
imizer of the new criterion of Definition 3.11 in a certain family of
norms. This result suggests that if the least squares slope reconstruction
gives an unstable scheme, then any consistent slope reconstruction is
also very likely to lead to an unstable scheme. This result can be loosely
interpreted as a result of optimality of the least squares reconstruction
but this interpretation is of course not completely rigorous. This con-
clusion is supported by the fact that the Green reconstruction of Section
4.3 had to be modified in CEDRE because it produced unusually large
gradients on distorted meshes.

2. The result of Theorem 3.15 suggests that a larger reconstruction stencil
should lead to a more robust scheme, at least for the least squares recon-
struction. In section 4, this hypothesis has been tested numerically and
it turns out to be particularly true for three-dimensional meshes. This
could explain why hexahedral grids have better stability properties than
tetrahedral grids.

Numerical computations of the spectra of MUSCL discretization opera-
tors complete and confirm the theoretical part of this paper. They show a
strong correlation between a local property of the slope reconstruction, the
so called local reconstruction map, and the appearance of unstable eigen-
modes. The discretization seems to be stable on all two-dimensional meshes.
Significant instabilities arise on tetrahedral grids when the reconstruction
stencil is the first neighborhood of the cell, showing that this stencil is
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too small for this type of mesh. The instabilities disappear when the least
squares reconstruction is used on a larger stencil, in this case the second
neighborhood. However, they can emerge again if an alternative reconstruc-
tion method is used, in this example the second order gradient reconstruc-
tion. These numerical results underpin the theoretical conclusions.

The results have allowed to design a new consistent slope reconstruction
method in CEDRE that is based on the second neighborhood and gives a
stable discretization of the linear advection equation, [25,24]. With this new
reconstruction, the computation of a subsonic flow over a deep cavity can
now be computed without slope limiters. This situation allows to measure
the impact of different slope limiters on the solution [24]. In the case of the
hot supersonic jet, it was possible to carry out the computation with slope
limiters only active inside the nozzle. The result establishes clearly that the
dampening of the jet noise is caused by the slope limiters and not by the
piecewise linear reconstruction [24].
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