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Abstract. In this paper we continue the study, which was initiated in [10, 28, 9, 7],
of the numerical resolution of the pure streamfunction formulation of the time-
dependent two-dimensional Navier-Stokes equation. Here we focus on enhancing
our second-order scheme, introduced in [28, 9, 7], to fourth order accuracy. We
construct fourth order approximations for the Laplacian, the biharmonic and the
nonlinear convective operators. The scheme is compact (nine-point stencil) for the
Laplacian and the biharmonic operators, which are both treated implicitly in the
time-stepping scheme. The approximation of the convective term is compact in the
no-leak boundary conditions case and is nearly compact (thirteen points stencil)
in the case of general boundary conditions. However, we stress that in any case
no unphysical boundary condition was applied to our scheme. Numerical results
demonstrate that the fourth order accuracy is actually obtained for several test-
cases.

Keywords: Navier-Stokes equations, streamfunction formulation, vorticity, nu-
merical algorithm, compact schemes.

1. Introduction

The numerical resolution of the classical Navier-Stokes system, governing vis-
cous, incompressible, time-dependent flow, has been an outstanding challenge of
computational fluid dynamics since its early stages . The most extensively used
approach was the ”finite element” method. We do not cite here any references
for that topic, not only because the existing literature is so vast, but also be-
cause our study here falls into the category of finite difference methods. In this
category one can find some well-known methods such as ”projection methods” (
[21, 52, 5, 12, 36] and the references therein), ”Spectral methods” ([11, 37, 16]),
”Galerkin methods” ([44, 54]) and a variety of ”velocity-vorticity” ([22, 23, 24]) or
”vorticity-streamfunction” methods ([46, 53, 25, 47, 27]). See [45, 33] for a review
on fundamental formulations of incompressible Navier-Stokes equations. The ap-
pearance and growing popularity of ”compact schemes” brought a renewed interest
in the aforementioned methods ([26, 17, 18, 43, 42, 19, 50, 35, 1, 13]). The pure-
streamfunction formulation for the time-dependent Navier-Stokes system in planar
domains has been used in [31, 32, 30] some twenty years ago. It has been designed
primarily for the numerical investigation of the Hopf bifurcation occurring in the
driven cavity problem. Their approach was based on a finite-difference method.
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The application of various compact schemes to the pure streamfunction formula-
tion is fairly recent [10, 41, 15, 28, 38]. We mention also [48, 20, 40, 39, 34] for
works on the stationary Stokes or Navier-Stokes equation. In [9, 7] a comprehen-
sive treatment of a second order compact scheme in space and time is presented.
It is based on the Stephenson scheme for the biharmonic problem [50] and includes
a detailed analysis of the (linearized) stability and a proof of the convergence of
the fully nonlinear scheme. In addition, a fast solver for the fourth order elliptic
problems, which is applied at each time step, is presented in [8]. We note also that
a compact finite-difference (second-order) scheme, based on the same approach,
for irregular domains , has recently been presented [6]. Recall that an important
feature of the methodology presented in [9], [7] is that the ”numerical boundary
conditions” are applied only to the streamfunction itself and imposed solely on the
boundary. Thus the scheme conforms exactly with the theoretical (pure stream-
function) formulation of the Navier-Stokes system . In particular, this approach
avoids

• Artificial boundary conditions (such as vorticity boundary values).
• Ghost points which are added to the computational domain (in order to

improve accuracy).

The main purpose of the present paper is to extend the aforementioned second
order scheme [9], to a fourth order scheme. With this added accuracy, we are able
to simulate the dynamics of flow problems in rectangles with sparser grids and fewer
time steps, compared with the second order scheme.

The outline of the paper is as follows. In Section 3, we present fourth order
approximations for all spatial operators appearing in the evolution equation, i.e.,
the Laplacian, the biharmonic operator and the nonlinear convective term. Two
alternative fourth-order schemes are constructed; the first for ”no-leak” or periodic
boundary conditions and the second for general boundary conditions.

In Section 4 the scheme is coupled with two types of time-stepping schemes.
The first is a second order time-stepping scheme, already used in [9]. The second
is formally almost third order accurate and was introduced in [49] in the context of
Navier-Stokes simulations using spectral methods for the discretization in space.

A detailed analysis of the linear stability properties of the full discrete scheme,
is given in Section 5.

Finally, in Section 6 we present several numerical results, which demonstrate the
gain obtained by the increased accuracy .

2. Basic discrete operations

For simplicity, assume that Ω = [a, b]2 is a square. We lay out a uniform grid a =
x0 < x1 < ... < xN = b, a = y0 < y1 < ... < yN = b. Assume that ∆x = ∆y = h.
At each grid point (xi, yj) we have three unknowns ψi,j , pi,j, qi,j , where p = ψx and
q = ψy. The connections between ψ and (ψx, ψy) is the Hermitian relation that we
recall below. Let us summarize first some notation for finite difference operators.
We assume that the function ψ is regular.

• The centered difference operators δxψ,δyψ, δ2xψ,δ2yψ, along with their trun-
cation errors are given by

(2.1) δxψi,j =
ψi+1,j − ψi−1,j

2h
, δxψi,j = ∂xψ +

1

6
h2∂3

xψ +O(h4),
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(2.2) δyψi,j =
ψi,j+1 − ψi,j−1

2h
, δyψi,j = ∂yψ +

1

6
h2∂3

yψ +O(h4)

and

(2.3) δ2xψi,j =
ψi+1,j − 2ψi,j + ψi−1,j

h2
, δ2xψi,j = ∂2

xψ +
1

12
h2∂4

xψ +O(h4),

(2.4) δ2yψi,j =
ψi,j+1 − 2ψi,j + ψi,j−1

h2
, δ2yψi,j = ∂2

yψ +
1

12
h2∂4

yψ +O(h4).

• The Hermitian gradient (ψx, ψy) is defined by the two relations

(2.5)





(I +
h2

6
δ2x)ψx,i,j = δxψi,j , 1 ≤ i, j ≤ N − 1

(I +
h2

6
δ2y)ψy,i,j = δyψi,j , 1 ≤ i, j ≤ N − 1.

The Hermitian gradient (ψx, ψy) is fourth order accurate in the two direc-
tions x and y with a truncation error given by

(2.6) ψx,i,j = ∂xψ − 1

180
h4∂5

xψ +O(h6),

(2.7) ψy,i,j = ∂yψ − 1

180
h4∂5

yψ +O(h6).

• The Stephenson one-dimensional fourth-order finite-difference operators are
defined at each grid point (xi, yj), 1 ≤ i, j ≤ N − 1 by (see [9]),

(2.8) δ4xψi,j =
12

h2

{
(δxψx)i,j − δ2xψi,j

}
, δ4xψi,j = ∂4

xψ − 1

720
h4∂8

xψ +O(h6),

(2.9) δ4yψi,j =
12

h2

{
(δyψy)i,j − δ2yψi,j

}
, δ4yψi,j = ∂4

yψ − 1

720
h4∂8

yψ +O(h6).

Thus, the local truncation errors are of fourth order accuracy.
• The operators δ+x and δ+y are defined by

(2.10) δ+x ψi,j =
ψi+1,j − ψi,j

h
, δ+y ψi,j =

ψi,j+1 − ψi,j
h

and are clearly first order approximations of ∂xψ and ∂yψ.
• The forward discrete averaging operators µx, µy are defined by

(2.11) µxψi,j =
1

2
(ψi,j + ψi+1,j) , µyψi,j =

1

2
(ψi,j + ψi,j+1).

We consider continuous functions ψ which vanish, along with their gradients, on
the boundary. The discrete analogue, which we denote by L2

0,h × (L2
0,h)

2, consists
of grid functions ψi,j , ψx,i,j, ψy,i,j with zero values at boundary points. We regard

the grid-functions ψi,j , 1 ≤ i, j ≤ N − 1 as elements of R(N−1)2 , equipped with the
scalar product in L2

0,h

(2.12) (ψ, φ)h = h2
N−1∑

i,j=1

ψi,jφi,j .

Whenever needed, boundary values of ψ, ψx, ψy are taken as zero. Thus, we set,

for example, δ+x ψ0,j =
ψ1,j−ψ0,j

2h =
ψ1,j

2h .
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3. Fourth order spatial discretization of the Navier-Stokes equation

3.1. The second order pure streamfunction scheme. In this subsection, we
recall briefly the second order pure streamfunction scheme, which is the basis of
the present study. We consider the Navier-Stokes equation in pure streamfunction
form

(3.1)

{
∂t∆ψ + ∇⊥ψ · ∇∆ψ − ν∆2ψ = f(x, y, t),
ψ(x, y, t) = ψ0(x, y).

Recall that ∇⊥ψ = (−∂yψ, ∂xψ) is the velocity vector. Equation (3.1) is rewritten
as

(3.2) ∂t∆ψ − ∂yψ∆∂xψ + ∂xψ∆∂yψ − ν∆2ψ = f(x, y, t).

The design of the scheme proceeds along the method of lines. This means that we
first discretize the equation in space, then in time. The spatial discretization is
obtained simply by plugging in (3.2) the following second order approximations.

• The five point discrete Laplacian

(3.3) ∆hψi,j = δ2xψi,j + δ2yψi,j

with truncation error

(3.4) ∆hψi,j = ∆ψ +
1

12
h2(∂4

xψ + ∂4
yψ) +O(h4).

• The Stephenson second-order biharmonic operator

(3.5) ∆2
hψi,j = δ4xψi,j + δ4yψi,j + 2δ2xδ

2
yψi,j

with truncation error

(3.6) ∆2
hψi,j = ∆2ψ +

1

6
h2(∂2

x∂
4
yψ + ∂4

x∂
2
yψ) +O(h4).

• The second order discrete convective term Ch(ψ)

(3.7) Ch(ψ)i,j = −ψy,i,j(∆hψx)i,j + ψx,i,j(∆hψy)i,j .

At grid point (xi, yj) and time t, the semi-discrete second order scheme for the
time-dependent Navier-Stokes equation is

(3.8)
d

dt
∆hψi,j(t) + Ch(ψ(t))i,j − ν∆2

hψi,j(t) = f(xi, yj , t).

A second order time-stepping scheme is then used to perform the time integration.
This is discussed in more detail in Section 4 below. Extensive numerical results,
stability and convergence analysis for the second order scheme, as well as an effi-
cient fast solver, were carried out in [9], [7], [8]. We now turn to the goal of this
paper, namely the derivation of a discrete approximation to Equation (3.1), which
is fourth-order accurate in the spatial variables.

3.2. Fourth order discrete Laplacian and biharmonic operators. The fourth
order discrete Laplacian ∆̃hψ and biharmonic ∆̃2

hψ operators introduced in [8] are
perturbations of the second order operators (3.3) and (3.5). This perturbation is
based on the explicit truncation error displayed in Equation (3.4) for the Laplacian.

(3.9) ∆̃hψ = ∆hψ − h2

12
(δ4x + δ4y)ψ.
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In other words, the expression is clearly a fourth-order approximation of ∆ψ. In
fact, using the expressions (2.3), (2.4) for δ2xψ, δ2yψ and (2.8), (2.9) for δ4xψ, δ4yψ,
we can define a fourth order version of the discrete Laplacian as

(3.10) ∆̃hψ = 2∆hψ − (δxψx + δyψy).

We note that the precise fourth-order truncation error is

(3.11) ∆̃hψi,j − ∆ψ =
1

360
h4(∂6

xψ + ∂6
yψ) +O(h6).

Similarly, we define
(3.12)

∆̃2
hψ = ∆2

hψ− h2

6
(δ2xδ

4
y + δ4xδ

2
y)ψ = δ4x

(
I − h2

6
δ2y

)
ψ + δ4y

(
I − h2

6
δ2x

)
ψ+ 2δ2xδ

2
yψ.

The associated truncation error is given by
(3.13)

∆̃2
hψi,j−∆2ψ = −h4

(
1

720
(∂8
xψ + ∂8

yψ) +
1

72
∂4
x∂

4
yψ − 1

180
(∂2
x∂

6
yψ + ∂6

x∂
2
yψ)

)
+O(h6).

Recall that the second order Laplacian and biharmonic operators are self-adjoint
and positive. Assume that ψ, φ ∈ L2

h,0. Then, for the Laplacian we have

(3.14) −(∆hψ, φ)h = (δ+x ψ, δ
+
x φ)h + (δ+y ψ, δ

+
y φ)h.

In addition, if (ψx, ψy), (φx, φy) ∈ L2
h,0 are the Hermitian gradients related to ψ, φ

by (2.6),(2.7), we have (see [7], eqn. (138))

(3.15)
(∆2

hψ, φ)h = (δ+x ψx, δ
+
x φx)h + (δ+y ψy, δ

+
y φy)h + 2(δ+x δ

+
y ψ, δ

+
x δ

+
y φ)h

+ 12
h2 (δ+x ψ − µxψx, δ

+
x φ− µxφx)h

+ 12
h2 (δ+y ψ − µyψy, δ

+
y φ− µyφy)h.

The last two equalities form the basis of the stability and convergence analysis for
the discrete Laplace and biharmonic equations, where the operators are chosen as
∆h and ∆2

h (see [7]). Similarly, for the fourth order operators ∆̃h, ∆̃2
h, we have

Proposition 3.1 (Symmetry and coercivity of the operators -∆̃h, ∆̃2
h). If ψ, φ ∈

L2
h,0 and (ψx, ψy), (φx, φy) ∈ L2

h,0 are the corresponding Hermitian gradients, then

(i) The fourth order Laplacian ∆̃h satisfies the relation

−(∆̃hψ, φ)h = (δ+x ψ, δ
+
x φ)h + (δ+y ψ, δ

+
y φ)h

+ (δ+x ψ − µxψx, δ
+
x φ− µxφx)h + (δ+y ψ − µyψy, δ

+
y φ− µyφy)h

+
h2

12

(
(δ+x ψx, δ

+
x φx)h + (δ+y ψy, δ

+
y φy)h

)
.

(ii) The fourth order biharmonic ∆̃2
h satisfies the relation

(∆̃2
hψ, φ)h = (δ+x ψx, δ

+
x φx)h + (δ+y ψy, δ

+
y φy)h + 2(δ+x δ

+
y ψ, δ

+
x δ

+
y φ)h

+
12

h2
(δ+x ψ − µxψx, δ

+
x φ− µxφx)h +

12

h2
(δ+y ψ − µyψy, δ

+
y φ− µyφy)h

+
h2

6

(
(δ+x δ

+
y ψx, δ

+
x δ

+
y φx)h + (δ+x δ

+
y ψy, δ

+
x δ

+
y φy)h

)

+ 2(δ+y (δ+x ψ − µxψx), δ
+
y (δ+x φ− µxφx))h + 2(δ+x (δ+y ψ − µyψy), δ

+
x (δ+y φ− µyφy))h.
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Proof: Note the following identity (see [7], eqn. (88))

(3.16) (δ4xψ, φ)h = (δ+x ψx, δ
+
x φx)h +

12

h2
(δ+x ψ − µxψ, δ

+
x φ− µxφ)h.

Combining this equation with (3.9) and (3.14) yields (i). We turn now to part (ii).
Consider the two terms δ2yδ

4
x and δ2xδ

4
y in (3.12). A discrete integration by parts

and (3.16) gives

(δ2yδ
4
xψ, φ)h = −(δ+y δ

4
xψ, δ

+
y φ)h = −(δ+x δ

+
y ψx, δ

+
x δ

+
y φx)h(3.17)

− 12

h2
(δ+x δ

+
y ψ − µxδ

+
y ψx, δ

+
x δ

+
y φ− µxδ

+
y φx)h.

Similarly,

(δ2xδ
4
yψ, φ)h = −(δ+x δ

4
yψ, δ

+
x φ)h = −(δ+x δ

+
y ψy, δ

+
x δ

+
y φy)h(3.18)

− 12

h2
(δ+x δ

+
y ψ − µyδ

+
x ψy, δ

+
x δ

+
y φ− µyδ

+
x φy)h.

Combining (3.12), (3.15), (3.17) and (3.18) yields the result. �

Corollary 3.1 (Positivity of the operators−∆̃h, ∆̃2
h). If ψ, φ ∈ L2

h,0 and (ψx, ψy), (φx, φy) ∈
L2
h,0 are the corresponding Hermitian gradients, then −∆̃h and ∆̃2

h are positive and
in fact

(3.19) −(∆̃hψ, ψ)h ≥ −(∆hψ, ψ)h = |δ+x ψ|2h + |δ+y ψ|2h

(3.20) (∆̃2
hψ, ψ)h ≥ (∆2

hψ, ψ)h ≥ C(|δ+x ψx|2h + |δ+y ψy|2h + |δ+x ψy|2h + |δ+y ψx|2h)

3.3. A fourth order convective term: no-leak or periodic boundary con-
ditions. The convective term in the Navier-Stokes equation (3.1) is

(3.21) u · ∂x∆ψ + v · ∂y∆ψ = ∇⊥ψ · ∇∆ψ = −∂yψ∆∂xψ + ∂xψ∆∂yψ := C(ψ),

where the velocity u = (u, v) = ∇⊥ψ. In this section we present a finite difference
operator, which retains the compact stencil of nine points, without any special
treatment at near boundary points. It is fourth-order accurate in the specific cases
of no-leak or periodic boundary conditions. In the previous work ([7]) we applied
the following finite difference operator to approximate the convective term (3.21).

(3.22) Ch(ψ) = −ψy∆hψx + ψx∆hψy.

Note that replacing in (3.22) ∆h by ∆̃h would formally make this term fourth-order

accurate. However, applying ∆̃h to ψx forces us (see (3.10)) to use the operator
δxψxx at near boundary points, hence to use zero boundary values for ψxx. This is
in contradiction to the continuous case, where the vorticity ∆ψ does not in general
vanish on the boundary. It can be shown that the truncation error in (3.22) is
(3.23)

Ch(ψ) − C(ψ) = h2

12

(
−∂yψ∂x(∂4

xψ + ∂4
yψ) + ∂xψ∂y(∂

4
xψ + ∂4

yψ)
)

+O(h4).

Since the velocity (u, v) = (−∂yψ, ∂xψ) is divergence free, the term in parenthesis
in the right-hand-side of the last equation can be written in conservative form as
follows.

−∂yψ∂x(∂4
xψ + ∂4

yψ) + ∂xψ∂y(∂
4
xψ + ∂4

yψ) = ∂x(u(∂
4
xψ + ∂4

yψ)) + ∂y(v(∂
4
xψ + ∂4

yψ))

= ∂x(−∂yψ(∂4
xψ + ∂4

yψ)) + ∂y(∂xψ(∂4
xψ + ∂4

yψ)).
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Note that this form is invariant under any coordinate transformation. Replacing
the partial derivatives, appearing in the right-hand-side of the last equation, by
second order accurate finite difference operators yields

(3.24)
∂x(−∂yψ(∂4

xψ + ∂4
yψ)) + ∂y(∂xψ(∂4

xψ + ∂4
yψ)) =

δx(−ψy(δ4xψ + δ4yψ)) + δy(ψx(δ
4
xψ + δ4yψ)) +O(h2).

Therefore, fourth-order approximation of the convective term C(ψ) in (3.21) may
be written (using 3.23) as
(3.25)

C̃h(ψ) = −ψy∆hψx + ψx∆hψy − h2

12

(
δx(−ψy(δ4xψ + δ4yψ)) + δy(ψx(δ

4
xψ + δ4yψ))

)

= C(ψ) +O(h4).

The difficulty with this expression is that it involves high-order differences, appear-
ing in the term

(3.26) J = δx(−ψy(δ4xψ + δ4yψ)) + δy(ψx(δ
4
xψ + δ4yψ)).

We show now that in the special case of zero boundary conditions, we can still
evaluate J at each interior point, including near-boundary points. Consider the
term δx(−ψy(δ4xψ + δ4yψ)) at near boundary points, in particular near the left or

right sides of the square. This requires the knowledge of δ4xψ on the boundary.
The latter is known for periodic problems, since in this case all points are interior
points. Alternatively, we consider the specific case of no-leak boundary conditions.
Along the left and right sides the no-leak condition reads u = −ψy = 0. Hence,
the term −ψy(δ4xψ + δ4yψ) is zero on the boundary. Thus, δx(−ψy(δ4xψ + δ4yψ)) is
computable near left/right sides. Along the top/bottom sides, no problem arises
when one computes the value of δx(−ψy(δ4xψ+δ4yψ)) at near-boundary points, since

δx operates in the x direction only. Similar considerations hold for δy(−ψx(δ4xψ +
δ4yψ)).

3.4. A fourth order convective term: general boundary conditions. In
the previous section we had a fourth-order approximation (3.25) for the convective
term, based on the compact stencil and the Hermitian derivatives (ψx, ψy). In
this section, we construct a fourth order approximation of the convective term
for general boundary conditions, namely we do not impose periodic or no-leak
conditions on the boundary as was needed for (3.25). However, the price to be paid
is the use of higher order polynomials in order to compute approximate derivatives.
Recall the definition of the convective term

(3.27) u · ∂x∆ψ + v · ∂y∆ψ = −∂yψ∆∂xψ + ∂xψ∆∂yψ.

Since the Hermitian gradient gives a fourth order approximation to ∂xψ, ∂yψ, we
only need to have a fourth-order approximation to ∂x∆ψ and ∂y∆ψ. Consider now

(3.28) ∂x∆ψ = ∂3
xψ + ∂2

y∂xψ.

We first construct a fourth order approximation to the pure third order derivative
∂3
xψ. Let us fix y to be yj. We construct a fifth order polynomial in x, which

interpolates ψ and ∂xψ at (xi−1, yj), (xi, yj), (xi+1, yj). The third order derivative
7



of this polynomial at point (xi, yj) is

(ψ̃xxx)i,j =
3

2h2
(10δxψi,j − [(∂xψ)i+1,j + 8(∂xψ)i,j + (∂xψ)i−1,j ])(3.29)

=
3

2h2

(
10δxψ − h2δ2x∂xψ − 10∂xψ

)
i,j
.

It can be easily checked that this defines a fourth order accurate approximation to
∂3
xψ at (xi, yj), provided that ∂xψ is the exact value of this partial derivative. In

addition, the mixed third order derivative in (3.28) is approximated to fourth-order

accuracy by ψ̃yyx, where

(3.30) ψ̃yyx = δ2y∂xψ + δxδ
2
yψ − δxδy∂yψ.

This can be verified by a straightforward Taylor expansion. Therefore, combining
(3.29) and (3.30), we see that ∂x∆ψ is approximated to fourth order accuracy by

(3.31) ∂̃x∆hψ =
3

2

(
10
δxψ − ∂xψ

h2
− δ2x∂xψ

)
+ δ2y∂xψ + δxδ

2
yψ − δxδy∂yψ.

Similarly, ∂y∆ψ is approximated by

(3.32) ∂̃y∆hψ =
3

2

(
10
δyψ − ∂yψ

h2
− δ2y∂yψ

)
+ δ2x∂yψ + δyδ

2
xψ − δyδx∂xψ.

Thus, the convective term −ψy∆xψ + ψy∆yψ is approximated by

(3.33)
C̃′
h(ψ) = −ψy

(
3
2

(
10 δxψ−∂xψ

h2 − δ2x∂xψ
)

+ δ2y∂xψ + δxδ
2
yψ − δxδy∂yψ

)

+ ψx

(
3
2

(
10

δyψ−∂yψ
h2 − δ2y∂yψ

)
+ δ2x∂yψ + δyδ

2
xψ − δyδx∂xψ

)
.

Finally, (3.33) may be written as follows.

(3.34)

C̃′
h(ψ) = −ψy

(
∆h∂xψ + 5

2

(
6 δxψ−∂xψ

h2 − δ2x∂xψ
)

+ δxδ
2
yψ − δxδy∂yψ

)

+ ψx

(
∆h∂yψ + 5

2

(
6
δyψ−∂yψ

h2 − δ2y∂yψ
)

+ δyδ
2
xψ − δyδx∂xψ

)

= C(ψ) +O(h4).

Note that equation (3.34) is fourth-order accurate if ψ, ∂xψ and ∂yψ are the exact
values of the function ψ and its first order derivatives. However, if we approxi-
mate ∂xψ and ∂yψ by ψx and ψy, which are defined by the Hermitian fourth-order
relations

(3.35) δxψ = ψx +
h2

6
δ2xψx, δyψ = ψy +

h2

6
δ2yψy,

and substitute (3.35) in (3.34), then
(3.36)

C̃′
h(ψ) = −ψy

(
∆hψx + δxδ

2
yψ − δxδyψy

)
+ ψx

(
∆hψy + δyδ

2
xψ − δyδxψx

)

= C(ψ) +O(h2).

Observe that the latter is only second order accurate, whereas the loss of accuracy
occurs only due to the replacement of (∂xψ, ∂yψ) by (ψx, ψy) and (ψx, ψy) = (∂xψ+
O(h4), ∂yψ + O(h4)). In order to retain fourth order accuracy in (3.34), when
replacing (∂x, ∂y) by approximate derivatives, we have to provide a sixth order
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approximation for such derivatives. We denote the approximate derivatives by ψ̃x
and ψ̃y. Here we use a Pade relation as given in [19]. It has the following form.

(3.37)
1

3
(ψ̃x)i+1,j + (ψ̃x)i,j +

1

3
(ψ̃x)i−1,j =

14

9

ψi+1,j − ψi−1,j

2h
+

1

9

ψi+2,j − ψi−2,j

4h
.

The local truncation error for ψ̃x in (3.37) is of sixth order, i.e.,

(3.38) (ψ̃x)i,j = (∂xψ)i,j + h6 1

2100
(∂7
xψ)i,j +O(h8).

If we substitute (3.37) in (3.29) we obtain

(3.39) (ψ̃xxx)i,j = (∂3
xψ)i,j +

h4

120
(∂7
xψ)i,j +O(h6).

At near-boundary points we apply a one-sided approximation for ∂xψ (see [19]).
For i = 1 (a point next to the left boundary) we have

(3.40)
1

10
(ψ̃x)0,j +

6

10
(ψ̃x)1,j +

3

10
(ψ̃x)i−1,j =

−10ψ0,j − 9ψ1,j + 18ψ2,j + ψ3,j

30h
.

For i = N − 1 we have
(3.41)
1

10
(ψ̃x)N,j+

6

10
(ψ̃x)N−1,j+

3

10
(ψ̃x)N−2,j =

10ψN,j + 9ψN−1,j − 18ψN−2,j − ψN−3,j

30h
.

In a similar manner we approximate ∂yψ. To summarize, a fourth order approxi-
mation of the convective term for general boundary conditions is

C̃′
h(ψ) = −ψy

(
∆hψ̃x +

5

2

(
6
δxψ − ψ̃x

h2
− δ2xψ̃x

)
+ δxδ

2
yψ − δxδyψ̃y

)
(3.42)

+ ψx
(
∆hψ̃y +

5

2

(
6
δyψ − ψ̃y

h2
− δ2yψ̃y

)
+ δyδ

2
xψ − δyδxψ̃x

)

= C(ψ) +O(h4),

where ψx, ψy are the Hermitian derivatives defined in (2.5) and ψ̃x, ψ̃y are the
approximate derivatives defined by the Pade relation for 2 ≤ i ≤ N − 2, 1 ≤ j ≤
N − 1, by
(3.43)



1

3
(ψ̃x)i+1,j + (ψ̃x)i,j +

1

3
(ψ̃x)i−1,j =

14

9

ψi+1,j − ψi−1,j

2h
+

1

9

ψi+2,j − ψi−2,j

4h
1

10
(ψ̃x)0,j +

6

10
(ψ̃x)1,j +

3

10
(ψ̃x)2,j =

−10ψ0,j − 9ψ1,j + 18ψ2,j + ψ3,j

30h
1

10
(ψ̃x)N,j +

6

10
(ψ̃x)N−1,j +

3

10
(ψ̃x)N−2,j =

10ψN,j + 9ψN−1,j − 18ψN−2,j − ψN−3,j

30h

and ψ̃y is defined as a function of ψ for 1 ≤ i ≤ N − 1, 2 ≤ j ≤ N − 2 by
(3.44)



1

3
(ψ̃y)i,j+1 + (ψ̃y)i,j +

1

3
(ψ̃y)i,j−1 =

14

9

ψi,j+1 − ψi,j−1

2h
+

1

9

ψi,j+2 − ψi,j−2

4h
1

10
(ψ̃y)i,0 +

6

10
(ψ̃y)i,1 +

3

10
(ψ̃y)i,2 =

−10ψi,0 − 9ψi,1 + 18ψi,2 + ψi,3
30h

1

10
(ψ̃y)i,N +

6

10
(ψ̃y)i,N−1 +

3

10
(ψ̃y)i,N−2 =

10ψi,N + 9ψi,N−1 − 18ψi,N−2 − ψi,N−3

30h
.

Note that a compact scheme for irregular domains was developed in [6].
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4. Time-stepping Scheme

4.1. Introduction. Having approximated the spatial operators to fourth order
accuracy in Section 3, we are left now with the semidiscrete dynamical system

(4.1)

{
∂t∆̃hψ + Capph (ψ) − ν∆̃2

hψ = f(xi, yj , t)
ψ(xi, yj, t) = ψ0(xi, yj).

Recall that

• ∆̃hψ is the fourth order Laplacian (3.10)

• ∆̃2
hψ is the fourth order approximation of the biharmonic (3.12)

• Capph is a fourth order approximation to the convective term C(ψ) (see

(3.22)). For example, we can take Capph as C̃h (see (3.25)) or C′
h (see

(3.34)). That is

(4.2) Capph = C(ψ) +O(h4) = ∇⊥ψ · ∇∆ψ +O(h4).

Using the notation

(4.3)





U(t) = ∆̃hψ(t)

D(t) = ν∆̃2
h(ψ(t))

C(t) = Capph (ψ(t))
F (t) = f(t),

we obtain the dynamical system

(4.4)
d

dt
U(t) = −C(t) +D(t) + F (t).

We describe now two different one-level time-stepping schemes of IMplicit-EXplicit
(IMEX) type (see [2], [3]). For IMEX schemes the convective term is treated ex-
plicitly, while the diffusive term is diagonally implicit.

4.2. Second order time-stepping scheme. The first IMEX scheme is the second
order time-stepping scheme used in [9]. It is a one-level scheme with two interme-
diate steps, where each of them contains one resolution of a biharmonic problem.
This scheme is explicit for the convective part and implicit for the diffusive part.
We begin with the known quantity ψn and compute first ψn+1/2. We then use
the intermediate quantity ψn+1/2 in a second step in order to obtain ψn+1. Letting
U1, D1, C1 be the quantities associated with ψn, similarly U2, D2, C2 be the associ-
ated quantities associated with ψn+1/2 and U3, D3, C3 be the associated quantities
associated with ψn+1, the scheme may be written as follows.

(4.5)

{
U2 = U1 + ∆t

2

(
−C1 + 1

2D
1 + 1

2D
2
)

+ ∆t
2 F̃

n+1/4

U3 = U1 + ∆t
(
−C2 + 1

2D
2 + 1

2D
3
)

+ ∆tF̃n+1/2.

Here ψn+1/2, ψn+1 are involved (implicitly) in the expressions U2 − 1
2∆tD2, U3 −

1
2∆tD3, respectively. Note that the second step provides ψn+1 as the solution of
the problem

(4.6) (∆̃h −
∆t

2
∆̃2
h)ψ

n+1 = ∆̃hψ
n + ∆t(−C2 +

1

2
D2) + ∆tFn+1/2.

This scheme is second order accurate in time and fourth order accurate in space.
Namely, if ψ is the exact solution of (3.1), then it satisfies equation (4.6) up to an
errorO((∆t)3+h4). Finally, observe that we apply the fully-discrete scheme (4.5) at
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all interior points. On the boundaries, we impose the no-slip and no-leak boundary
conditions. The latter completely determine ψ, ψx and ψy on the boundary.

4.3. Higher order time-stepping scheme. The second IMEX scheme to be
described here is almost third order accurate. Note that the design of IMEX one-
level stable schemes which is at least third order accurate is not an easy task (see
[3]). This actually requires handling of the formal accuracy of the scheme in all
Peclet regimes and the analysis of the restriction on the time step (i.e., a CFL
condition) due to the the convective term. Here we adopt a three-step Runge-
Kutta scheme suggested in [49] in a slightly different context. Using the notation
(see (4.3))

(4.7)





U = ∆̃hψ

D = ν∆̃2
h(ψ)

C = Capph (ψ),

and letting U1, D1, C1 be the quantities associated with ψn (at the first time step),
similarly U2, D2, C2 be the associated quantities associated with ψ at the second
time step, U3, D3, C3 be the associated quantities associated with ψ at the third
time step and U4, D4, C4 be the quantities associated with ψn+1 , the scheme reads
(4.8)



U2 = U1 + ∆t
(
γ1(−C1) + α1D

1 + β1D
2
)

+ 8
15∆tFn+4/15

U3 = U2 + ∆t
(
γ2(−C2) + ζ1(−C1) + α2D

2 + β2D
3
)

+ ∆t
(

2
3F

n+1/3 − 8
15F

n+4/15
)

U4 = U3 + ∆t
(
γ3(−C3) + ζ2(−C2) + α3D

3 + β3D
4
)

+ ∆t
(

1
6F

n + 2
3F

n+1/2 + 1
6F

n+1 − 2
3F

n+1/3
)
.

The values of the parameters are as follows (see [49])

(4.9)





α1 =
29

96
α2 =

−3

40
α3 =

1

6

β1 =
37

160
β2 =

5

24
β3 =

1

6

γ1 =
8

15
γ2 =

5

12
γ3 =

3

4

ζ1 =
−17

60
ζ2 =

−5

12
.

The final value of ψn+1 is obtained in the last step of the scheme, by solving

(4.10)
(∆̃h − ∆tβ3ν∆̃

2
h)ψ

n+1 = U3 + ∆t
(
γ3(−C3) + ζ2(−C2) + α3D

3
)

+ ∆t
(

1
6F

n + 2
3F

n+1/2 + 1
6F

n+1 − 2
3F

n+1/3
)
.

The values of the parameters in (4.9) were obtained by matching the Taylor ex-
pansion of the exact solution with the Taylor expansion of the solution derived by
the time-stepping scheme. They satisfy the requirements for first and second order
accuracy in time and all, except one, for third order accuracy in time. It is impos-
sible to satisfy all these requirements in the setting of the scheme (4.8). Therefore,
the formal accuracy of this time scheme is less than three (see [49]). Presumably,
third order accuracy could be obtained by a four-step scheme. Note that in our
numerical results third (or almost third) order accuracy in time was achieved (see
section 6 below).
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5. Stability analysis

5.1. Discrete operators and symbols. In this section, we consider the schemes
(4.5) and (4.8) applied to the equation

(5.1) ∆ψt = C(ψ) + ν∆2ψ,

where C(ψ) is a linear convection term C(ψ) = a∆ψx + b∆ψy, with a, b being real
constants. Note that for simplicity we take the convection term here to be the
analog of -C(t) in (4.4). Therefore, we consider the equation

(5.2) ∆ψt = a∆ψx + b∆ψy + ν∆2ψ.

We perform the linear von-Neumann stability analysis, which consists of computing
the amplification factor of the full discretized time-space scheme in the periodic
setting over a uniform grid of mesh size h. We denote

(5.3) λ =
√
a2 + b2

∆t

h
(the CFL number), µ =

ν∆t

h2
.

The two phase angles in each of the directions x and y are θ = αh ∈ [0, 2π)
and ϕ = βh ∈ [0, 2π). Every discrete operator (on ψ) is expressed (via the Fourier

transformation) as a ”symbol” multiplying the Fourier transform ψ̂. Recall that
the symbols of the Hermitian derivatives ψx, ψy (2.5) are

(5.4) ψ̂x = Hxψ̂ = i
3 sin θ

h(2 + cos θ)
ψ̂, ψ̂y = Hyψ̂ = i

3 sinϕ

h(2 + cosϕ)
ψ̂,

respectively. Similarly, the symbols of the Pade derivatives ψ̃x, ψ̃y (3.43) and (3.44)
are

(5.5)
̂̃
ψx = H̃xψ̂ = i

sin θ(14 + cos θ)

3h(3 + 2 cos θ)
ψ̂,
̂̃
ψy = H̃yψ̂ = i

sinϕ(14 + cosϕ)

3h(3 + 2 cosϕ)
ψ̂,

respectively. The symbols of δxψx and δyψy are

(5.6) δ̂xψx = Kxψ̂ = − 3 sin2 θ

h2(2 + cos θ)
ψ̂, δ̂yψy = Kyψ̂ = − 3 sin2 ϕ

h2(2 + cosϕ)
ψ̂,

respectively. Similarly, the symbols of δxψ̃x, δyψ̃y are

(5.7) ̂δxψ̃x = K̃xψ̂ = − sin2 θ(14 + cos θ)

3h2(3 + 2 cos θ)
ψ̂, ̂δyψ̃y = K̃yψ̂ = − sin2 ϕ(14 + cosϕ)

3h2(3 + 2 cosϕ)
ψ̂,

respectively. We can now introduce the symbols of the discrete operators appearing
in (4.5). The symbol of ∆h is

(5.8) M = − 2

h2
((1 − cos θ) + (1 − cosϕ)).

We compute next the symbol of the discrete fourth-order accurate Laplacian ∆̃h

(see (3.10)). Using (5.8) and (5.6), we find that the symbol of −h2∆̃h, which we
denote by A1(θ, ϕ),is

(5.9) A1(θ, ϕ) =
(1 − cos θ)(5 + cos θ)

2 + cos θ
+

(1 − cosϕ)(5 + cosϕ)

2 + cosϕ
.
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We turn next to the computation of the symbol of ∆̃2
h = ∆2

h − h2

6 (δ2xδ
4
y + δ4xδ

2
y),

which is the discrete fourth-order accurate biharmonic operator (3.12). We note
that the symbols of δ4x and δ4y (see (2.8) and (2.9)) are respectively

(5.10) Jx =
12

h4

(1 − cos θ)2

2 + cos θ
, Jy =

12

h4

(1 − cosϕ)2

2 + cosϕ
,

(see (5.6) for δ̂xψx and δ̂yψy). Therefore, the symbol of h2ν∆̃2
h, which is denoted

by B1(θ, ϕ), is
(5.11)

B1(θ, ϕ) = h2ν
(
Jx + Jy + 4

h4 (1 − cos θ)
(
1 − cosϕ+ h4

12Jy
)

+ 4
h4 (1 − cosϕ)

(
1 − cos θ + h4

12Jx
))

= 12νh−2
(

(1−cos θ)2

2+cos θ + (1−cosϕ)2

2+cosϕ + (1 − cos θ)(1 − cosϕ)
(

1
2+cosϕ + 1

2+cos θ

))
.

The convective term approximations in the case of (5.2) are given by the following
analogues of (3.25) and (3.42):

(5.12) C̃h(ψ) = a∆hψx + b∆hψy −
h2

12

(
aδx(δ

4
x + δ4y) + bδy(δ

4
x + δ4y)

)
ψ,

where (ψx, ψy) is the Hermitian approximation (2.6, 2.7) to ∇ψ at grid points and

C̃′
h(ψ) = a

(
∆hψ̃x +

5

2

(
6
δxψ − ψ̃x

h2
− δ2xψ̃x

)
+ δxδ

2
yψ − δxδyψ̃y

)
(5.13)

+ b
(
∆hψ̃y +

5

2

(
6
δyψ − ψ̃y

h2
− δ2yψ̃y

)
+ δyδ

2
xψ − δyδxψ̃x

)
,

where ψ̃x, ψ̃y are the approximate Pade derivatives defined in (3.43) and (3.44).

I) The symbol of C̃h (see (5.12)): Note that C̃h(ψ) is fourth-order accurate in the
case of periodic (or no-leak) boundary conditions. The symbols of the operators
ψ → ∆hψx and ψ → ∆hψy are

Mx = MHx = −i 6 sin θ

h3(2 + cos θ)
((1 − cos θ) + (1 − cosϕ)),(5.14)

My = MHy = −i 6 sinϕ

h3(2 + cosϕ)
((1 − cos θ) + (1 − cosϕ))

and the symbols of ψ → δx(δ
4
xψ + δ4yψ) and ψ → δy(δ

4
xψ + δ4yψ) are

Nx = i
sin θ

h
(Jx + Jy) = i

12 sin θ

h5

( (1 − cos θ)2

2 + cos θ
+

(1 − cosϕ)2

2 + cosϕ

)
,(5.15)

Ny = i
sinϕ

h
(Jx + Jy) = i

12 sinϕ

h5

( (1 − cosϕ)2

2 + cosϕ
+

(1 − cosϕ)2

2 + cosϕ

)
.

Denote by C1(θ, ϕ) the symbol of ih2C̃h. From (5.12), (5.14) and (5.15) we obtain
(5.16)

C1(θ, ϕ) = h−1
(
a sin θ

(
(1 − cos θ)7−cos θ

2+cos θ + (1 − cosϕ)
(

6
2+cos θ + 1−cosϕ

2+cosϕ

))
+

+ b sinϕ
(
(1 − cosϕ)7−cosϕ

2+cosϕ + (1 − cos θ)
(

6
2+cosϕ + 1−cos θ

2+cos θ

)))
.

Note also that

(5.17) C2
1 (θ, ϕ) ≤ h−2(a2 + b2)D̃(θ, ϕ),
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where
(5.18)

D̃(θ, ϕ) =
{
| sin θ|

(
(1 − cos θ)7−cos θ

2+cos θ + (1 − cosϕ)
(

6
2+cos θ + 1−cosϕ

2+cosϕ

))}2
+

+
{
| sinϕ|

(
(1 − cosϕ)7−cosϕ

2+cosϕ + (1 − cos θ)
(

6
2+cosϕ + 1−cos θ

2+cos θ

))}2
.

II) The symbol of C̄′
h (see (5.13), which is the analogue of (3.42)): Recall that

C̃′
h(ψ) is fourth order accurate in the case of general boundary conditions. The

symbols of ψ → ∆hψ̃x and ψ → ∆hψ̃y are

Lx = MH̃x = −i2 sin θ(14 + cos θ)

3h3(3 + 2 cos θ)
((1 − cos θ + (1 − cosϕ)),(5.19)

Ly = MH̃y = −i2 sinϕ(14 + cosϕ)

3h3(3 + 2 cosϕ)
((1 − cos θ + (1 − cosϕ))

and the symbols of ψ → 5
2

(
6 δxψ−ψ̃x

h2 − δ2xψ̃x
)
, ψ → 5

2

(
6
δyψ−ψ̃y

h2 − δ2yψ̃y
)

are

(5.20) Ix = −i5 sin θ(1 − cos θ)2

3h3(3 + 2 cos θ)
, Iy = −i5 sinϕ(1 − cosϕ)2

3h3(3 + 2 cosϕ)
.

In addition, the symbols of ψ → δxδ
2
yψ, ψ → δyδ

2
xψ are

(5.21) Qx = −i2 sin θ(1 − cosϕ)

h3
, Qy = −i2 sinϕ(1 − cos θ)

h3

and the symbols of δxδyψ̃y, δyδxψ̃x are

Rx = i
sin θ

h
K̃y = −i sin θ sin2 ϕ(14 + cosϕ)

3h3(3 + 2 cosϕ)
,(5.22)

Ry = i
sinϕ

h
K̃x = −i sinϕ sin2 θ(14 + cos θ)

3h3(3 + 2 cos θ)
.

Denote by C′
1(θ, ϕ) the symbol of ih2C̃′

h(ψ). From (5.13), (5.19), (5.20), (5.21) and
(5.22) we obtain

(5.23) C′
1(θ, ϕ) = h−1 (aG(θ, ϕ) + bG(ϕ, θ)) ,

where
(5.24)

G(θ, ϕ) = sin θ

(
(1 − cos θ)

11 − cos θ

3 + 2 cos θ
+ (1 − cosϕ)

(2(23 + 7 cos θ)

3(3 + 2 cos θ)
− (1 + cosϕ)(14 + cosϕ)

3(3 + 2 cosϕ)

))
.

5.2. Stability of the second order time-stepping scheme. In this section we
analyze the stability of the second order time-stepping scheme with the two different
approximations for the convective term C̃h, or C̃′

h.

The second order time-stepping scheme (4.5) reads, with, for example C̃h,

• Step 1: Computation of ψn+1/2

(5.25) (∆̃h −
1

4
∆tν∆̃2

h)ψ
n+1/2 = (∆̃hψ

n +
1

4
∆tν∆̃2

h)ψ
n +

1

2
∆tC̃h(ψ

n)

• Step 2: Computation of ψn+1

(5.26) (∆̃h −
1

2
∆tν∆̃2

h)ψ
n+1 = (∆̃hψ

n +
1

2
∆tν∆̃2

h).ψ
n + ∆tC̃h(ψ

n+1/2).
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The second order time-stepping scheme has already been used in our work [9]
but with second order spatial operators ∆h,∆

2
h, Ch instead of the fourth order

spatial operators ∆̃h, ∆̃
2
h, C̃h (or C̃′

h). Here we improve the accuracy of the spatial
operators and also the stability criterion as follows.

5.2.1. Stability condition on the time-step. The stability analysis carried out in this
subsection reveals a surprising fact:

A sufficient condition for the stability of the scheme is

(a2 + b2)∆t ≤ Cν,

where C > 0 is a numerical constant (which is explicitly calculated below).
In particular, this condition is independent of h and implies the unconditional

stability of the scheme when a = b = 0.
The following proposition gives a sufficient stability condition on the time-step

for the scheme (5.25) for each of the two convective terms C̃h and C̃′
h.

Proposition 5.1. (i) (Convective term for no-leak boundary condition
(5.12) ) The predictor-corrector scheme (5.25,5.26) is stable in the von-Neumann
sense under the sufficient condition

(5.27) 24(a2 + b2)∆t ≤ ν.

(ii)(Convective term for general boundary condition (5.13) ) The predictor-
corrector scheme (5.25,5.26) is stable in the von-Neumann sense under the suffi-
cient condition

(5.28) 54(a2 + b2) ∆t ≤ ν.

Proof: We perform the proof of (i) only, as the proof of (ii) goes along the same
lines. Let g1(θ, ϕ), g2(θ, ϕ) be the amplification factors related to (5.25, 5.26),
respectively. We have

(5.29)





g1(θ, ϕ) =
A1(θ, ϕ) − ∆t

4 B1(θ, ϕ) + i∆t2 C1(θ, ϕ)

A1(θ, ϕ) + ∆t
4 B1(θ, ϕ)

g2(θ, ϕ) =
A1(θ, ϕ) − ∆t

2 B1(θ, ϕ) + i∆t C1(θ, ϕ)g1(θ, ϕ)

A1(θ, ϕ) + ∆t
2 B1(θ, ϕ)

.

Note that g2 is the amplification factor for the full time-step.
The (strong) von-Neumann stability condition is (see [51])

(5.30) sup
θ,ϕ∈[0,2π)

|g2(θ, ϕ)| ≤ 1.

We restrict ourselves to the case where

(5.31) sup
θ,ϕ∈[0,2π)

|g1(θ, ϕ)| ≤ 1.

This is equivalent to

(5.32) ∆t C2
1 ≤ 4A1B1.

In order to study the meaning of this condition in terms of ∆t, we define new
variables

(5.33) x = sin
θ

2
, y = sin

ϕ

2
.

15



Then

(5.34)
A1 ≥ 4(x2 + y2),

B1 ≥ 16νh−2(x4 + y4 + 2x2y2) = 16νh−2(x2 + y2)2,

(5.35) |C1| ≤ 32h−1(|ax| + |by|)(x2 + y2).

The condition (5.32) is therefore implied by

(5.36) 322∆t h−2(|ax| + |by|)2
(
x2 + y2

)2 ≤ 162νh−2
(
x2 + y2

)3
,

or

(5.37) 4∆t (|ax| + |by|)2 ≤ ν(x2 + y2).

This condition is implied in turn by

(5.38) 4(a2 + b2)∆t ≤ ν.

From now on we assume that (5.31) holds. Then, (5.30) is satisfied if
(5.39)

−2∆tC1(θ, ϕ) Im(g1(θ, ϕ))[A1(θ, ϕ) − ∆t
2 B1(θ, ϕ)] + (∆t)2C2

1 (θ, ϕ)|g1(θ, ϕ)|2
≤ 2∆tA1(θ, ϕ)B1(θ, ϕ), (θ, ϕ) ∈ [0, 2π]2.

Inserting the value of Im(g1(θ, ϕ)) from (5.29) we conclude that a sufficient condi-
tion for (5.30) is

(5.40) (∆t)2C2
1

(
1 − A1 − ∆t

2 B1

A1 + ∆t
4 B1

)
≤ 2∆tA1B1,

which is satisfied if and only if

(5.41) (∆t)2C2
1 ≤ 8

3
(A2

1 +
∆t

4
A1B1).

Ignoring the term A2
1 in the right-hand side we finally obtain the sufficient condition

(5.42) (∆t)2C2
1 ≤ 2∆t

3
A1B1.

This leads (see (5.38)) to
24(a2 + b2)∆t ≤ ν.

This completes the proof of the proposition. �

Remark 5.2 (concerning more general stability analysis). (a) Observe that
in the nonconvective case, a = b = 0, the scheme is unconditionally stable. In
the presence of the convective term the time step should be limited by the viscosity
coefficient.
(b) Note that the stability result in Proposition 5.1 obtained for a convective term
C(ψ) as in Eq. (5.2), i.e., constant coefficients. If a, b are replaced by known functions u, v,
we obtain the linearized form of the Navier-Stokes system. The stability analysis in
this case cannot be carried out by the von-Neumann ”amplification factor” method,
and one must resort to some energy L2 estimates. In fact, using the coercivity of
the biharmonic term, this was done in [7], even for the fully nonlinear case, when
the discretized form of the convective term was second-order accurate. In our treat-
ment here we insist on fourth-order accuracy of the convective term (see Subsections
3.3, 3.4). It is not clear yet how the coercivity of the biharmonic operator can be
used in order to majorize the (linearized) convective term of order four in (3.25)
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or (3.33). Furthermore using the general pattern of the von-Neumann analysis, we
have used periodic boundary conditions. Using the more realistic no-leak condition
complicates considerably the analysis, even though we expect the main conclusion
in Proposition 5.1 (i.e., dependence of ∆t on ν) to remain valid.
(c) Finally recall that, using a general framework, one can derive convergence rates
from the accuracy estimates. Indeed, let us consider an exact equation

(5.43)
∂ψ

∂t
= Lψ,

and its approximate version

(5.44)
∂ψ

∂t
= Lhψ.

The stability implies that exp(Lht) is uniformly bounded (in h > 0) , for 0 ≤ t ≤ T.
Thus, if

(5.45) ‖Lφ− Lhφ‖ ≤ C(φ)hβ ,

then also

(5.46) ‖ exp(Lt)φ− exp(Lht)φ‖ ≤ C(φ, T )hβ , 0 ≤ t ≤ T.

It follows that for Eq. (5.2), with periodic boundary conditions, the semi-discrete
(in time) evolution converges at a fourth-order (with respect to h) rate. If a fully
discrete version is employed, then the rate of convergence will also depend on the
accuracy (with respect to ∆t) of the time discretization. We refer to [26] for the
fourth-order convergence analysis in the streamfunction-vorticity formulation and to
[7] for the pure streamfunction formulation. Observe that both these papers address
the convergence of the fully nonlinear system.

5.2.2. Dimensionless stability analysis. In this subsection, we analyze the stability
condition for the scheme (5.25,5.26) in terms of the dimensionless numbers λ and
µ , see (5.3).

First, observe that if we keep the term A2
1 in (5.41) then we can improve the

stability condition in the following way. Note that (5.16) implies

(5.47) |C1| ≤ 16h−1(|a sin θ| + |b sinϕ|)(x2 + y2).

By (5.34) and (5.47), we obtain that (5.41) is implied by

(5.48) 162
(∆t
h

)2
(|a sin θ| + |b sinϕ|)2 ≤ 8

3
(16 + 16µ(x2 + y2)).

Thus, a sufficient condition for (5.41) is

(5.49) λ2 ≤ 1

12
+

1

24
µ.

Taking into account (5.38), we find that a sufficient condition for overall stability
is

(5.50) λ2 ≤ min(
1

4
µ,

1

12
+

1

24
µ) := CFL2

1(µ).

Similarly, for the convective term C̃′
h, we have

(5.51) λ2 ≤ min(
1

9
µ,

1

27
+

1

54
µ).

Looking at the right-hand-side of (5.50), we distinguish between two different
cases for which the minimum is achieved.
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• µ ≤ 2
5 . In this case, we are computationally in the diffusive regime. The

stability condition (5.50) reads

(5.52) λ ≤ 1

2

√
µ,

or equivalently

(5.53) ∆t ≤ ν

4(a2 + b2)
,

which is (5.38). In particular, this means that if ν → 0+, then the time
step tends to zero independently of the mesh size h.

• µ > 2
5 . In this case, the stability condition becomes

(5.54) λ ≤
√

1

12
+

1

24
µ.

A sufficient condition for stability, which is uniform for all µ ≥ 2
5 , is λ ≤

1√
10

. Equivalently

(5.55) ∆t ≤ h√
10(a2 + b2)

,

In addition, we would like to give a practical interpretation of the stability con-
dition (5.50). For this purpose, we restrict ourselves to a sufficient condition, which
is more restrictive then (5.50), namely:

(5.56) λ2 ≤ min(
1

4
µ,

1

12
).

This means that a sufficient condition for stability is

(5.57) ∆t ≤ min(
1

4(a2 + b2)
ν,

1√
12(a2 + b2)

h).

Therefore, for small ν the time step ∆t is restricted by a factor of ν and for larger
ν the time step is restricted by a factor of h.

In Fig. 1 we display the stability curve

(5.58) µ > 0 7→ CFL1(µ),

where CFL1(µ) is defined in (5.50). In order to provide a more accurate view of the
stability condition (5.50) for the scheme (5.25, 5.26), we also computed numerically
the curve

(5.59) µ > 0 7→ CFL2(µ),

where CFL2(µ) is the maximum value defined by the stability condition (5.30)
alone, without the intermediate assumption (5.31). Inserting in the expression for
g2 the expression for g1, we obtain that (5.30) is equivalent to

(5.60) C̄4
1 + B̄1(

3

4
B̄1 −A1)C̄

2
1 − 2A1B̄1(2A1 +

1

2
B̄1)

2 ≤ 0 ∀(θ, ϕ) ∈ [0, 2π)2,

where

(5.61) B̄1 = ∆tB1 , C̄1 = ∆tC1
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Figure 1: Curves Log(µ) 7→ Log(CFL1(µ)) with ’–’ (theoretical) and Log(µ) 7→
Log(CFL2(µ)) with ’o’(numerical)

are the dimensionless symbols of the biharmonic and convective terms. The dis-
criminant of the second order polynomial, which appears in (5.60), considered as a
function of C̄2

1 is

(5.62) ∆(θ, ϕ, µ) = B̄2
1(

3B̄1

4
−A1)

2 + 8A1B̄1(2A1 +
1

2
B̄1)

2 ≥ 0.

The two roots of the second order polynomial in (5.60), considered as a function of
C̄2

1 , have opposite sign. Therefore, a sufficient condition for (5.60) to hold is that

(5.63) C̄2
1 ≤ 1

2

(
B̄1(A1 −

3

4
B̄1) +

√
∆

)
:= N(θ, ϕ, µ),

Combining (5.63) with (5.17), we obtain that a sufficient stability condition is

(5.64) λ2 ≤ min
0<θ,ϕ<2π

N(θ, ϕ, µ)

D̃(θ, ϕ)
:= CFL2

2(µ),

where D̃(θ, ϕ) is defined in (5.18). Sampling µ in some interval [0, µmax], we
compute numerically, as before, the minimum appearing in the right-hand side
of (5.64). In Fig. 1 we report the two Log Log plots of the functions µ > 0 7→
CFL1(µ), CFL2(µ). Observe that as expected, the curves satisfy

(5.65) CFL1(µ) < CFL2(µ)

and that they have a similar shape.

5.3. Stability of the high order time-stepping scheme. We consider here the
scheme (4.8) for the linear equation (5.2). The three steps to compute ψn+1 as a
function of ψn = ψ(1) are

• Step 1: Computation of ψ(2)

(5.66) (∆̃h − β1∆tν∆̃
2
h)ψ

(2) = (∆̃hψ
(1) + α1∆tν∆̃

2
h)ψ

(1) + γ1∆tC̃h(ψ
(1)
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• Step 2: Computation of ψ(3)

(5.67)

(∆̃h − β2∆tν∆̃
2
h)ψ

(3) = (∆̃hψ
(2) + α2∆tν∆̃

2
h)ψ

(2) + γ2∆tC̃h(ψ
(2)) + ζ1∆tC̃h(ψ

(1))

• Step 3: Computation of ψ(4)

(5.68)

(∆̃h − β3∆tν∆̃
2
h)ψ

(4) = (∆̃hψ
(3) + α3∆tν∆̃

2
h)ψ

(3) + γ3∆tC̃h(ψ
(3)) + ζ2∆tC̃h(ψ

(2))

The three amplification factors, corresponding respectively to the three steps are
(θ, ϕ) 7→ g1(θ, ϕ), g2(θ, ϕ), g3(θ, ϕ)

(5.69)





g1 =
A1 − α1B̄1 + iγ1C̄1

A1 + β1B̄1

g2 =

(
A1 − α2B̄1

)
g1 + i (γ2g1 + ζ1) C̄1

A1 + β2B̄1

g3 =

(
A1 − α3B̄1

)
g2 + i (γ3g2 + ζ2g1) C̄1

A1 + β3B̄1
,

where B̄1 and C̄1 are as in (5.61). The von-Neumann stability condition linking µ
and λ is

(5.70) max
θ,ϕ∈[0,2π)

|g3(θ, ϕ)| ≤ 1.

We note that |g3| ≤ 1 is equivalent to
(5.71)[

(A1 − α3B̄1)Re(g2) − C1(γ3 Im(g2) + ζ2 Im(g1))
]2

+
[
(A1 − α3B̄1) Im(g2) + C1(γ3 Re(g2) + ζ2 Re(g1))

]2
≤ (A1 + β3B̄1)

2.

We compute now the real and the imaginary parts of g1 and g2.

(5.72) Re(g1) =
A1 − α1B̄1

A1 + β1B̄1
, Im(g1) =

γ1C̄1

A1 + β1B̄1
.

(5.73) Re(g2) =
(A1 − α2B̄1)(A1 − α1B̄1) − γ1γ2C̄

2
1

(A1 + β1B̄1)(A1 + β2B̄1)
.

(5.74) Im(g2) = C1
(ζ1 + γ1 + γ2)A1 − (α2γ1 + α1γ2 − β1ζ1)B̄1

(A1 + β1B̄1)(A1 + β2B̄1)
.

Inserting the real and the imaginary parts of g1 and g2 in (5.71), we find that a
sufficient condition for stability is
(5.75) [

(A1 − α3B̄1)(A1 − α2B̄1)(A1 − α1B̄1) − γ1γ2(A1 − α3B̄1)C̄
2
1

−γ3C̄
2
1

(
(ζ1 + γ1 + γ2)A1 − (α2γ1 + α1γ2 − β1ζ1)B̄1

)
− γ1ζ2C̄

2
1 (A1 + β2B̄1)

]2
+C̄2

1

[
(A1 − α3B̄1)((ζ1 + γ1 + γ2)A1 − (α2γ1 + α1γ2 − β1ζ1)B̄1)

+γ3(A1 − α1B̄1)(A1 − α2B̄1) − γ1γ2γ3C̄
2
1 + ζ2(A1 − α1B̄1)(A1 + β2B̄1)

]2
≤ (A1 + β1B̄1)

2(A1 + β2B̄1)
2(A1 + β3B̄1)

2.

Expanding the left-hand-side of the last inequality as a polynomial in C̄2
1 , we find

that |g3| ≤ 1 is equivalent to

(5.76) (A− C̄2
1B)2 + C̄2

1 (D − C̄2
1E)2 − F ≤ 0,
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where A,B,D,E, F are defined as functions of θ, ϕ and µ by
(5.77)



A = (A1 − α1B̄1)(A1 − α2B̄1)(A1 − α3B̄1)
B = (γ1γ2 + γ2γ3 + γ3γ1 + γ1ζ2 + γ3ζ1)A1 + (γ1ζ2β2 + γ3ζ1β1 − γ1γ2α3 − γ3γ1α2 − γ2γ3α1) B̄1

D = (A1 − α3B̄1)
(
(γ1 + γ2 + ζ1)A1 + (β1ζ1 − α2γ1 − α1γ2)B̄1

)

+ (A1 − α1B̄1)
(
(γ3 + ζ2)A1 + (ζ2β2 − γ3α2)B̄1

)

E = γ1γ2γ3

F = (A1 + β1B̄1)
2(A1 + β2B̄1)

2(A1 + β3B̄1)
2.

Equivalently,

(5.78) E2C̄6
1 + (B2 − 2ED)C̄4

1 + (−2AB +D2)C̄2
1 +A2 − F ≤ 0.

Note that A,B,D,E, F depend on the parameter (θ, ϕ) and also on µ, where the
dependence on µ is via B̄1 and the dependence on λ is via C̄1 (see (5.61), (5.11),
(5.16)). For a given µ, we find a condition on λ so that (5.78) is satisfied, as follows.

(5.79) C̄2
1 ≤ z(θ, ϕ, µ), for all (θ, ϕ),

where z(θ, ϕ, µ) is the first positive root of the cubic polynomial Pµ,θ,ϕ(z) defined
by

(5.80) Pµ,θ,ϕ(z) = E2z3 + (B2 − 2ED)z2 + (−2AB +D2)z +A2 − F.

Note that this root exists since A2 − F < 0 for all θ, ϕ and Pµ,θ,ϕ(z) → +∞ when
z → +∞. Since

(5.81) C̄2
1 ≤ λ2D̃(θ, ϕ),

using (5.79) we find that a sufficient condition for stability is

(5.82) λ2 ≤ min
θ,ϕ

z(θ, ϕ, µ)

D̃(θ, ϕ)
:= CFL2

3(µ).

In Fig 2 we display in Log-Log scale the curve

(5.83) µ 7→ CFL3(µ).

The graph is computed numerically using, as in Subsection 5.2, a sampling of
θ, ϕ ∈ [0, 2π), and of µ > 0.

6. Numerical results for the Navier-Stokes equations

6.1. FFT Linear Solver. Recall that the approximation of the Navier-Stokes
equation in pure streamfunction form (3.1) is treated implicitly for the diffusive
part and explictely for the convective term. Therefore, at each time-step, we have
to solve a set of linear equations of the form

(6.1) (∆̃h − κν∆t∆̃2
h)ψ = g.

Here κ is a constant, which depends on ∆t and on some parameters of the time-
stepping scheme. Note that at each time-step the second order time-stepping
scheme (4.5) requires two solutions (with different parameters κ) of (6.1), whereas
the higher-order time-stepping scheme (4.8) requires three such solutions. The res-
olution of the linear system is performed by the fast solver described in [8]. It uses
the Sine Basis Functions. For the no-slip boundary condition the solver described
in [8] incorporates this condition in the algorithm by a capacitance matrix method
and the use of the Sherman-Morrison theorem. For the non-homogeneous boundary
condition, see Sec. 3.4 in [8]. This solver is of O(N2 Log(N)) operations, where N is
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Figure 2: Curve Log(µ) 7→ Log(CFL3(µ)) with ’o’

the number of points in any direction. As an example, we note that one resolution
of (6.1) for N = 129 takes less than 0.05 seconds on a time-step on a 3GHz PC
with 2 GO memory.

6.2. Numerical accuracy with the second order time-scheme. In order to
verify the spatial fourth order accuracy of the scheme, we performed several nu-
merical tests using the second order time-stepping scheme (4.5). For the convective
term we use one of the fourth order approximations (3.25) or (3.42). Since we are
interested in the fourth order accuracy in space, we have to restrict the time-step
to ∆t = Ch2, where C is a constant. Note that it is more restrictive than any of
the stability conditions derived in Section 5.

6.2.1. Case 1: ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on Ω = [−1, 1]× [−1, 1]. Take

(6.2) f(x, y, t) = ∂t∆ψ + ∇⊥ψ · ∇∆ψ − ∆2ψ,

where ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t. Our aim is to recover ψ(x, y, t) from
f(x, y, t). Thus, we resolve numerically

(6.3)





∂t∆ψ + ∇⊥ψ · ∇∆ψ − ∆2ψ = f(x, y, t)
ψ(x, y, 0) = (1 − x2)3(1 − y2)3

ψ(x, y, t) = 0, ∂ψ(x,y,t)
∂n = 0, (x, y) ∈ ∂Ω.

In the Tables below we present the error, e, and the relative error, er, where

el2 = ‖ψcomp − ψexact‖l2 ,
er = e/‖ψexact‖l2

and
eu = ‖ucomp − uexact‖l2 .

Here, ψcomp,ucomp and ψexact,uexact are the computed and the exact streamfunction
and x− component of the velocity field, respectively. We represent results for
different time-levels and number of mesh points. In Table 1 we present numerical
results for the approximation (3.25) of the convective term. We observe clearly
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that applying our scheme with the convective term (3.25) (the no-leak/periodic
case) yields fourth order accuracy for ψ and the gradient of ψ. The results are
displayed in Table 1.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65
t = 0.25 e 5.0839(-3) 4.06 3.0510(-4) 4.02 1.8825(-5) 4.00 1.1728(-6)

er 9.4884(-3) 5.7414(-4) 3.5443(-5) 2.2081(-6)
ex 2.6385(-3) 3.89 1.7837(-4) 3.93 1.1662(-5) 3.98 7.3752(-7)

t = 0.5 e 3.2225(-3) 4.00 2.0078(-4) 4.00 1.2536(-5) 4.00 7.8331(-7)
er 7.7371(-3) 4.8519(-4) 3.0305(-5) 1.8937(-6)
ex 3.2290(-3) 4.02 1.9897(-4) 4.00 1.2437(-5) 4.00 7.7747(-7)

t = 0.75 e 2.4880(-3) 4.00 1.5505(-4) 4.00 9.6864(-6) 4.00 6.0537(-7)
er 7.6708(-3) 4.8108(-4) 3.0068(-5) 1.8792(-6)
ex 2.5519(-3) 4.03 1.5723(-4) 4.00 9.8188(-6) 4.00 6.1365(-7)

t = 1 e 1.9373(-3) 4.00 1.2072(-4) 4.00 7.5424(-6) 4.00 4.7138(-7)
er 7.6692(-3) 4.8096(-4) 3.0062(-5) 1.8788(-6)
ex 1.9886(-3) 4.02 1.2255(-4) 4.00 7.6527(-6) 4.00 4.7827(-7)

Table 1: Compact scheme for Navier-Stokes with exact solution: ψ = (1−x2)3(1−
y2)3e−t on [−1, 1] × [−1, 1]. We present e, the l2 error for the streamfunction and
ex the max error in the u = −∂yψ. The convective term is (3.25). In Figure 3 we
display in a Log/Log scale the error in ψ (shown numerically in Table 1) for the
four different time levels t = 0.25, 0.5, 0.75, 1. It can be clear from Figure 3 that
the slope of the graph is almost constant, which is around four. Table 2 displays
the results obtained by the approximation (3.42) (the general boundary conditions
case) of the convective term.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65
t = 0.25 e 5.0867(-3) 4.06 3.0525(-4) 4.02 1.8835(-5) 4.00 1.1734(-6)

er 9.4936(-3) 5.7441(-4) 3.5460(-5) 2.2092(-6)
ex 2.6390(-3) 3.89 1.7837(-4) 3.93 1.1670(-5) 3.98 7.3752(-7)

t = 0.5 e 3.2224(-3) 4.00 2.0085(-4) 4.00 1.2541(-5) 4.00 7.8361(-7)
er 7.7407(-3) 4.8536(-4) 3.0317(-5) 1.8944(-6)
ex 3.2285(-3) 4.02 1.9896(-4) 4.00 1.2436(-5) 4.00 7.7745(-7)

t = 0.75 e 2.4887(-3) 4.00 1.5508(-4) 4.00 9.6887(-6) 4.00 6.0551(-7)
er 7.6730(-3) 4.8119(-4) 3.0075(-5) 1.8796(-6)
ex 2.5516(-3) 4.02 1.5723(-4) 4.00 9.8187(-6) 4.00 6.1364(-7)

t = 1 e 1.9376(-3) 4.00 1.2074(-4) 4.00 7.5434(-6) 4.00 4.7145(-7)
er 7.6796(-3) 4.8103(-4) 3.0066(-5) 1.8791(-6)
ex 1.9885(-3) 4.02 1.2255(-4) 4.00 7.6526(-6) 4.00 4.7826(-7)

Table 2: Compact scheme for Navier-Stokes with exact solution: ψ = (1−x2)3(1−
y2)3e−t on [−1, 1] × [−, 1]. We present e, the l2 error for the streamfunction and
ex the max error in the u = −∂yψ. The convective term is (3.42).

6.2.2. Case 2: ψ = e−2x−ye−t on [0, 1] × [0, 1]. In Table 3 we display numerical
results for ψ = e−2x−ye−t, using the convective term (3.42) (the general boundary
condition case).
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mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65
t = 0.25 e 8.4636(-7) 3.94 5.5306(-7) 3.97 3.5412(-8) 3.98 2.2491(-10)

er 4.1691(-6) 2.4301(-7) 1.4728(-8) 9.1050(-10)
ex 8.6714(-6) 3.79 6.2534(-5) 3.90 4.1890(-8) 3.93 2.7576(-9)

t = 0.5 e 6.5253(-7) 3.93 4.2671(-8) 3.96 2.7421(-9) 3.98 1.7429(-10)
er 4.1272(-6) 2.4126(-7) 1.4644(-8) 9.0600(-10)
ex 6.6869(-6) 3.79 4.8421(-7) 3.90 3.2522(-8) 3.93 2.1389(-8)

t = 0.75 e 5.0415(-7) 3.93 3.3112(-8) 3.96 2.1259(-9) 3.97 1.3521(-10)
er 4.0944(-6) 2.3988(-7) 1.4577(-8) 9.0244(-10)
ex 5.1672(-6) 3.78 3.7539(-7) 3.87 2.5266(-8) 3.95 1.6605(-9)

t = 1 e 3.9017(-7) 3.93 2.5671(-8) 3.96 1.6494(-9) 3.97 1.0497(-10)
er 4.0687(-6) 2.3879(-7) 1.4525(-8) 8.9965(-10)
ex 3.9952(-6) 3.78 2.9132(-7) 3.89 1.9639(-8) 3.93 1.2900(-9)

Table 3: Compact scheme for Navier-Stokes with exact solution: ψ = e−2x−ye−t on
[0, 1]× [0, 1]. We present e, the l2 error for the streamfunction and ex the max error
in the u = −∂yψ. The convective term is (3.42) (the general boundary condition
case).

6.2.3. Case 3: ψ = (1 − x2)3(1 − y2)3e−t on [0, 1] × [0, 1]. In Table 4 we present
numerical results for ψ = (1−x2)3(1−y2)3e−t on [0, 1]× [0, 1], using the convective
term (3.42).

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65
t = 0.25 e 2.3767(-5) 3.91 1.5792(-7) 3.95 1.0232(-7) 4.03 6.5236(-9)

er 1.0958(-4) 6.5463(-6) 4.0380(-7) 2.5141(-8)
ex 7.2161(-4) 3.91 4.7907(-5) 3.97 3.0612(-6) 3.97 1.9347(-7)

t = 0.5 e 1.8518(-5) 3.91 1.2315(-7) 3.95 7.9827(-8) 3.97 5.0902(-9)
er 1.0963(-4) 6.5554(-6) 4.0450(-7) 2.5188(-8)
ex 5.6231(-4) 3.91 3.7309(-5) 3.97 2.3840(-6) 3.98 1.5067(-7)

t = 0.75 e 1.4425(-5) 3.91 9.5991(-7) 3.95 6.2235(-8) 3.97 3.9688(-9)
er 1.0965(-4) 6.5609(-6) 4.0993(-7) 2.5217(-8)
ex 4.3811(-4) 3.91 2.9055(-5) 3.97 1.8566(-6) 3.98 1.1173(-7)

t = 1 e 1.1236(-5) 3.91 7.5671(-7) 3.95 4.8500(-8) 3.97 3.0930(-9)
er 1.0967(-4) 6.3879(-6) 4.0520(-7) 2.5235(-8)
ex 3.1319(-4) 3.92 2.9132(-5) 3.97 1.4459(-6) 3.98 9.1385(-7)

Table 4: Compact scheme for the Navier-Stokes with exact solution: ψ = (1 −
x2)3(1− y2)3e−t on [0, 1]× [0, 1]. We present e, the l2 error for the streamfunction
and ex the max error in the u = −∂yψ. The convective term is (3.42).

Observe that in all test cases with the second order time-stepping scheme fourth-
order accuracy in space and second order accuracy in time are achieved.

6.3. Numerical accuracy with the higher-order time-scheme.

6.3.1. Case 1: ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on [−1, 1]× [−1, 1]. Now we con-
sider the time-stepping scheme (4.8) applied to the exact solution ψ(x, y, t) =
(1 − x2)3(1 − y2)3e−t on [−1, 1] × [−1, 1]. Since the scheme is fourth order ac-
curate in space and almost third order accurate in time [49], we picked ∆t as the
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Figure 3: Log(h) 7→ Log(error(h)). Case 6.2.1, second-order time-stepping scheme,
no-leak boundary condition.

minimum between ∆t = Ch4/3 and the value of ∆t as restricted in section 5. The
results are shown in Table 5.

mesh 17 × 17 33 × 33 Rate 65 × 65 Rate 129 × 129
t = 0.25 e 7.2167(-5) 4.02 4.4322(-6) 3.62 3.5965(-7) 3.29 3.6776(-8)

er 1.3562(-4) 8.3286(-6) 6.7714(-7) 6.9129(-8)
ex 7.5017(-4) 4.08 4.4344(-5) 4.20 2.4146(-6) 4.36 1.1739(-7)

t = 0.5 e 9.4956(-5) 3.80 6.8184(-6) 3.69 5.2714(-7) 3.60 4.3554(-8)
er 2.3091(-4) 1.6484(-5) 1.2744(-6) 1.0527(-7)
ex 4.3941(-4) 4.11 2.5365(-5) 4.24 1.3468(-6) 4.45 6.1584(-8)

t = 0.75 e 1.1601(-4) 3.86 7.9992(-6) 3.80 5.7617(-7) 3.73 4.3400(-8)
er 3.6146(-4) 2.4783(-5) 1.7885(-6) 1.3476(-7)
ex 2.4736(-4) 4.15 1.3973(-5) 4.31 7.0510(-7) 4.62 2.8624(-8)

t = 1 e 1.2156(-4) 3.90 8.1623(-6) 3.85 5.6441(-7) 3.81 4.0340(-8)
er 4.8531(-4) 3.2535(-5) 2.2496(-6) 1.6072(-8)
ex 1.2681(-4) 4.23 6.7792(-6) 4.26 3.5366(-7) 3.86 2.4347(-8)

Table 5: Compact scheme for the Navier-Stokes equations with exact solution:
ψ = (1 − x2)3(1 − y2)3e−t on [−1, 1] × [−1, 1]. We present e, the l2 error for the
streamfunction and ex the max error in the u = −∂yψ. Convective term (3.25).

Time-stepping scheme (4.8) with ∆t = Ch4/3.
In Table 6 we present similar results to those in Table 5, but now with the

approximation (3.42) for the general boundary conditions case.
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mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129
t = 0.25 e 7.4854(-5) 3.99 4.6895(-6) 3.63 3.7909(-7) 3.32 3.7958(-8)

er 1.4066(-4) 8.8121(-6) 7.1373(-7) 7.1458(-8)
ex 7.4490(-4) 4.07 4.4217(-5) 4.19 2.4174(-6) 4.35 1.1850(-7)

t = 0.5 e 9.9615(-5) 3.79 7.1931(-6) 3.71 5.5081(-7) 3.61 4.5021(-8)
er 2.3984(-4) 1.7390(-5) 1.3316(-6) 1.0882(-7)
ex 4.3783(-4) 4.15 2.4698(-5) 4.23 1.3166(-6) 4.44 6.7634(-8)

t = 0.75 e 1.2097(-4) 3.86 8.3195(-6) 3.80 5.9586(-7) 3.74 4.4637(-8)
er 3.7691(-4) 2.5877(-5) 1.8496(-6) 1.3852(-7)
ex 2.3823(-4) 4.17 1.3258(-5) 4.30 6.7180(-7) 4.41 3.1705(-8)

t = 1 e 1.2534(-4) 3.90 8.3958(-6) 3.85 5.7918(-7) 3.81 4.1269(-8)
er 4.9546(-4) 3.3466(-5) 2.3085(-6) 1.6442(-7)
ex 1.2362(-4) 4.28 6.3472(-6) 4.02 3.8993(-7) 3.87 2.6737(-8)

Table 6: Compact scheme for the Navier-Stokes equations with exact solution:
ψ = (1 − x2)3(1 − y2)3e−t on [−1, 1] × [−1, 1]. We present e, the l2 error for the
streamfunction and ex the max error in the u = −∂yψ. The convective term is

(3.42). Time-stepping scheme (4.8) with ∆t = Ch4/3.

6.3.2. Case 2: ψ = e−2x−ye−t on [0, 1] × [0, 1]. Table 7 summarizes the results
for ψ = e−2x−ye−t on [0, 1] × [0, 1], using the scheme (3.42) (general boundary
conditions) for the convective term.

mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129
t = 0.25 e 5.8771(-8) 3.99 3.6392(-9) 4.00 2.3074(-10) 2.38 4.5343(-11)

er 2.5875(-7) 1.5135(-8) 2.0170(-9) 1.8113(-10)
ex 8.8547(-7) 4.06 5.3189(-8) 4.06 3.1913(-9) 3.11 3.6950(-10)

t = 0.5 e 5.1921(-8) 4.02 3.1994(-9) 4.00 2.0005(-10) 2.12 4.5875(-11)
er 2.9294(-7) 1.7085(-8) 1.0397(-9) 2.3531(-10)
ex 6.5312(-7) 4.05 3.9263(-8) 4.04 2.3807(-9) 2.71 3.6286(-10)

t = 0.75 e 4.0887(-8) 4.00 2.5261(-8) 4.00 1.5801(-10) 2.03 3.8699(-11)
er 2.9564(-7) 1.7321(-8) 1.0543(-9) 2.5488(-10)
ex 4.7850(-7) 4.03 2.9192(-8) 4.03 1.7857(-8) 2.56 3.0230(-10)

t = 1 e 3.1381(-8) 4.01 1.9470(-9) 3.99 1.2212(-10) 1.97 3.1174(-11)
er 2.9078(-7) 1.7142(-8) 1.0468(-9) 2.6365(-10)
ex 9.2348(-6) 4.01 2.1867(-8) 4.02 1.3523(-9) 2.49 2.4074(-10)

Table 7: Compact scheme for the Navier-Stokes equations with exact solution:
ψ = e−2x−ye−t on [0, 1] × [0, 1]. We present e, the l2 error for the streamfunction
and ex the max error in the u = −∂yψ. The convective term is (3.42). Time-

stepping scheme (4.8) with ∆t = Ch4/3.
Note that for this test case the convergence rates from N = 17 to N = 33 and

from N = 33 to N = 65 are around 4. However, the convergence rate from N = 65
to N = 129 has been decreased, whereas in the previous two test cases (shown
in Tables 5 and 6) the convergence rate is around 4. The reason for the reduced
accuracy for N = 129 in case 2 is that the errors in the last column of Table 7
are very small, and they actually reach the accuracy of the computer. In the next
example we show that the convergence rate is around 4, also at the finest grids
level.
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Figure 4: Log(h) 7→ Log(error(h)). Case 6.3.3, Spalart et. al. time-stepping
scheme, general boundary conditions.

6.3.3. Case 3: ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on [0, 1] × [0, 1]. We consider the
Spalart et. al. scheme applied to the exact solution ψ(x, y, t) = (1−x2)3(1−y2)3e−t

on the square [0, 1] × [0, 1].

mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129
t = 0.25 e 1.5022(-6) 3.92 9.9168(-8) 3.87 6.7763(-9) 3.70 5.2892(-10)

er 6.2153(-6) 3.9197(-7) 2.6112(-8) 2.0148(-9)
ex 4.8052(-5) 3.97 3.0614(-6) 3.98 1.9378(-7) 3.98 1.2254(-8)

t = 0.5 e 1.4466(-6) 3.95 9.3439(-8) 3.92 6.1550(-9) 3.75 4.5764(-10)
er 7.7001(-6) 4.7348(-7) 3.0451(-8) 2.2384(-9)
ex 3.7321(-5) 3.97 2.3877(-6) 3.98 1.5096(-7) 3.98 9.5492(-8)

t = 0.75 e 1.1674(-6) 3.96 7.5132(-8) 3.94 4.8817(-9) 3.78 3.5552(-10)
er 7.9635(-6) 4.8884(-7) 3.1027(-8) 2.2329(-9)
ex 2.9106(-5) 3.97 1.8592(-6) 3.98 1.1175(-7) 3.91 7.4402(-9)

t = 1 e 9.0495(-7) 3.96 5.8434(-8) 3.95 3.7702(-9) 3.80 2.7092(-10)
er 7.9423(-6) 4.8819(-7) 3.0765(-8) 2.1849(-9)
ex 2.2612(-5) 3.97 1.4477(-6) 3.98 9.1540(-7) 3.98 5.7964(-9)

Table 8: Compact scheme for the Navier-Stokes equations with exact solution:
ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on [0, 1] × [0, 1] We present e, the l2 error for
the streamfunction and ex the max error in the u = −∂yψ. The convective term is

(3.42). Time-stepping scheme (4.8) with ∆t = Ch4/3.
In Figure 4 we display in a Log/Log scale the error in ψ (shown numerically

in Table 8) for the four different time levels t = 0.25, 0.5, 0.75, 1. It is clear from
Figure 4 that the slope of the graph is almost constant around four.

6.4. Driven cavity test cases. In this section, we briefly demonstrate the ca-
pability of the fourth order accurate scheme (4.8) to compute accurately several
classical driven cavity test cases on relatively coarse grids. To assess the spatial
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accuracy, we limit ourselves to a comparison of the asymptotic states of the classi-
cal driven cavity test case for a Reynolds number of Re = 1000. This case is well
documented in the literature. According to numerous numerical studies, see e.g.
[4], [11], [14], there is a unique asymptotic state.

The problem consists of a square [0, 1] × [0, 1]. A horizontal velocity u = 1 is
specified on the top edge, while both velocity components vanish on all other three
sides.

We display the results of u(1/2, y) and v(x, 1/2) as functions of y and x, respec-
tively. These are compared to the results obtained in the classical reference [29].
In Fig. 5, we display on the left the solution, using 33 × 33 points, subject to the
second order scheme presented in [9]. Observe that the reference values (plotted as
circles) are not reached at the steady-state. On the right we display the solution
subject to the fourth order scheme (4.8), using the same number of points. It agrees
much better with the reference values. Table 9 contains the locations and values of
the maximum-minimum of the streamfunction.

Fig. 6 and Table 10 document the same computation with 65 × 65 points. The
agreement with reference solutions in [29] and [14] is quite good. The results with
the fourth order scheme are slightly better than those obtained with the second
order scheme. We list some details concerning the computation using the fourth
order scheme with 65 × 65 points: 8000 time-iterations are performed with a time
step ∆t = 1/60 ≃ 0.01660. The physical time reached is T = 133 with a residual
on the streamfunction of res(ψ) = 1.65(−08). The CPU per time-step is 0.09375
seconds comprising three biharmonic resolutions per time-step, see (4.8). The global
CPU time of the computation is 750 seconds, which demonstrates the efficiency of
the fast solver for the biharmonic problem. The computations are performed on
a simple Laptop (2.40 GHz, 3GO Memory). We refer to [9] for results with the
second order scheme where more points are used.
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Figure 5: Driven Cavity for Re = 1000 : Velocity Components. Computations are
performed with N = 33. The second order scheme is on the left, and the fourth
order scheme on the right. The reference results of [29] are plotted with circles.
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2−nd order, N = 32 4−th order, N = 32 Ghia et al., N = 128 Bruneau et al., N = 1024
maxψ 0.10535 0.11541 0.117929 0.11892
(x̄, ȳ) (0.53125, 0.59375) (0.53125, 0.56250) (0.5313, 0.5625) (0.53125, 0.56543)
minψ −0.0016497 −0.0016875 −0.0017510 −0.0017292

Table 9: Streamfunction Formulation: Compact scheme for the driven cavity
problem, Re = 1000, 33 × 33 points.
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Figure 6: Driven Cavity for Re = 1000 : Velocity Components. Computations are
done with N = 65. The second order scheme is on the left, and the fourth order
scheme on the right. The reference results of [29] are plotted with circles.

2−nd order, N = 64 4−th order, N = 64 Ghia et al., N = 128 Bruneau et al., N = 1024
maxψ 0.116032 0.118033 0.117929 0.11892
(x̄, ȳ) (0.53125, 0.56250) (0.53125, 0.56250) (0.5313, 0.5625) (0.53125, 0.56543)
minψ −0.0017083 −0.0017067 −0.0017510 −0.0017292

Table 10: Streamfunction Formulation: Compact scheme for the driven cavity
problem, Re = 1000, 65 × 65 points.

7. Conclusion

This work presents the design of a fourth order accurate scheme for the Navier-
Stokes equation in pure-streamfunction formulation in the general framework of
[9] . In particular we show how to approximate the non linear convective term to
fourth order. We considered two types of time-stepping schemes . The first one is
second order and the second is of higher order. For the first scheme, we obtained
stability conditions. An investigation of the fourth order Runge-Kutta scheme with
an explicit treatment of the diffusive term and convective terms is underway.
Acknowledgment: This work is partially supported by the French-Israeli scientific
cooperation ”Arc-en-Ciel”, grant number 3-1355. This work was started in Summer
2007, when all three authors were at Brown University by the invitation of the late

29



Professor David Gottlieb. The many pleasant discussions we had with him during
our stay contributed a great deal to our work. He pointed out to us Ref. [16] [19]
and his comments and observations helped us improve our stability analysis. We
are also indebted to Professor Chi-Wang Shu for his warm hospitality during our
stay at Brown university.

References

[1] I. Altas, J. Dym, M. M. Gupta, and R. P Manohar. Mutigrid solution of automatically
generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput.,
19:1575–1585, 1998.

[2] U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit runge-kutta methods for time-
dependent partial differential equations. Appl. Num. Math., 25(2-3):151–167, 1997.

[3] U.M. Ascher, S.J. Ruuth, and T.R. Wetton. Implicit-explicit methods for time-dependent
partial differential equations. SIAM J. Numer. Anal., 32:797–823, 1995.

[4] F. Auteri, N. Parolini, and L. Quartapelle. Numerical investigation on the stability of the
singular driven cavity flow. Jour. of Comp. Phys., 183:1–25, 2002.

[5] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the incompress-
ible Navier-Stokes equations. J. Comp. Phys., 85:257–283, 1989.

[6] M. Ben-Artzi, I. Chorev, J-P. Croisille, and D. Fishelov. A compact difference scheme for the
biharmonic equation in planar irregular domains. Preprint, 2008.

[7] M. Ben-Artzi, J-P. Croisille, and D. Fishelov. Convergence of a compact scheme for the pure
streamfunction formulation of the unsteady Navier-Stokes system. SIAM J. Numer. Anal.,
44,5:1997–2024, 2006.

[8] M. Ben-Artzi, J-P. Croisille, and D. Fishelov. A fast direct solver for the biharmonic problem
in a rectangular grid. SIAM J. Scient. Comp., 31(1):303–333, 2008.

[9] M. Ben-Artzi, J-P. Croisille, D. Fishelov, and S. Trachtenberg. A Pure-Compact Scheme for
the Streamfunction Formulation of Navier-Stokes equations. J. Comp. Phys., 205(2):640–664,
2005.

[10] M. Ben-Artzi, D. Fishelov, and S. Trachtenberg. Vorticity Dynamics and Numerical Resolu-
tion of Navier-Stokes Equations. Math. Model. and Numer. Anal., 35(2):313–330, 2001.

[11] O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow. Comput.

Fluids, 27:421–433, 1998.
[12] D.L. Brown, R. Cortez, and M.L. Minion. Accurate projection methods for the incompressible

navier-stokes equations. J. Comput. Phys., 168:464–499, 2001.
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