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1 Introduction

In recent years, practical applications have motivated various extensions of the
MUSCL finite-volume method to general unstructured meshes and the MUSCL ap-
proach is at the heart of many solvers for compressible gas dynamics. On unstruc-
tured grids, many stability results rely explicitly on slope limiters, see for example the
maximum principle in [BO04] and the convergence results in [Cha00, Kro97]. Lim-
iters are inherently non-linear methods in the sense that they give non-linear schemes
even when they are applied to linear equations. Their importance lies mainly in appli-
cations to non-linear gas dynamics involving steep gradients and shocks. However, in
order to analyze the properties of a numerical scheme, it remains important to study
its behaviour in the case of the linear advection equation. In the absence of slope
limiters, the spatial discretization of the linear advection equation with constant co-
efficients results in a linear semi-discrete equation.

The purpose of the present work is a theoretical and numerical analysis of this
semi-discrete equation in order to examine the influence of the grid type, the recon-
struction method and the stencil size on the linear stability of the MUSCL scheme on
unstructured grids. The goal is to identify the slope reconstruction methods and the
stencil sizes that lead to stable discretizations of linear advection. In applications to
compressible gas dynamics, MUSCL schemes using these methods can be expected
to be more robust and accurate than schemes that are stabilized only by slope limiters.
Furthermore, it is interesting to examine if such schemes can be used with limiters
that are less restrictive than the limiters presented for example in [BO04]. The present
study is motivated by extensive numerical experiments in three-dimensional applica-
tions to internal flows and aerothermochemistry with the package CEDRE developed
by ONERA. We refer to [HCC08, Hai08] for more details.



2 F. Haider, Jean-Pierre Croisille, and B. Courbet

2 Slope Reconstruction on General Unstructured Meshes

This section develops the geometric notation and a general approach to consistent
slope reconstruction on unstructured grids. Throughout this paper the boundary con-
ditions are assumed to be periodic. We consider a general unstructured grid of a
cubeΩ ⊆ Rd consisting ofN general polyhedraTα with barycenterxα and d-
volume|Tα|. The faceAαβ , with barycenterxαβ , has a normal vectornαβ oriented
from cell Tα to Tβ . The length ofnαβ equals the surface|Aαβ |. The set of the cell
indices of the direct neighbors of cellTα is denotedVα. Furthermore, we define
hαβ = xβ − xα for all cellsTα andTβ andkαβ = xαβ − xα for all adjacent cells
Tα andTβ . Whenever two cells have no common interface,nαβ , 0 andkαβ , 0.
In addition,nαα , 0, kαα , 0 andhαα , 0. This allows to drop the neighborhood
in all sums and to write

∑
β instead of

∑
β ∈Vα

. The reconstruction of a slopeσα in
each cellTα allows to compute second order accurate values

uαβ = uα + σα · kαβ (1)

at the barycenterxαβ of the cell interfaceAαβ . The most general linear slope recon-
struction method can be written as

u 7→ σα (u) =
∑

β

sαβ (uβ − uα) (2)

where thesαβ are coefficient vectors in cellTα andsαβ , 0 by definition if cellTβ

is not in the reconstruction stencil of cellTα. Second order accuracy requires that (2)
reproduce the slope of polynomials of degree one. This is equivalent to the following
consistency condition for the coefficientssαβ

σ =
∑

β

sαβ (hαβ · σ) for all σ ∈ Rd . (3)

Let m be the number of cells in the reconstruction stencil of cellTα andWα ,
{β1, β2, . . . , βm} the cell indices in that stencil. On cellTα, the unknown vectors
sαβ , β ∈ Wα , form the columns of ad×m matrixSα. Similarly, the vectorshαβ ,
β ∈ Wα , form the rows of them× d matrixHα. Now the consistency condition (3)
can be written as the matrix equation with unknownSα

SαHα = Id×d . (4)

The least-squares slope coincides with the pseudo-inverse ofHα that is also the
minimum Frobenius norm solution of (4), see [HCC08]. It is given by

S ls
α =

(
Ht

αHα

)−1
Ht

α .

Another method is based on the well-known Green Theorem and results in

Sgr
α =

(
N t

αHα

)−1
N t

α
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where the matrixNα has the row vectors

n′αβ =
‖aαβ‖
‖hαβ‖

nαβ

andaαβ is the orthogonal projection ofkαβ onhαβ , see [HCC08].

3 Stability Analysis of the MUSCL Scheme

The application of the semi-discrete MUSCL scheme to the linear advection equation
∂tu (x, t) + c ·∇u (x, t) = 0 with periodic boundary condition results in a linear
dynamical system (method of lines)

duα (t)
dt

=
∑

β

Jαβuβ (t) ; 1 ≤ α ≤ N. (5)

The definitionsα ,
∑

β sαβ allows to write the MUSCL operatorJ in (5) as

Jαβ = − |Tα|−1

{∑
γ

(c · nαγ)+ δαβ + (c · nαβ)− + (6)

+
∑

γ

(nαγ · c)+ kαγ · sαβ −
∑

γ

(nαγ · c)+ kαγ · sα δαβ −

−
∑

γ

(nγα · c)+ kγα · sγβ + (nβα · c)+ kβα · sβ

}
.

The time derivative of the quadratic energy function of (5) can be written as a sum

d
dt

E (t) =
N∑

α=1

|Tα|
d
dt

(
|uα (t)|2

)
=

N∑
α=1

Φα (u) (7)

where

Φα (u) =
∑

β

(c · nαβ)+

− (uβ − uα)2︸ ︷︷ ︸
I

+ (8)

+2
∑

γ

(uβ − uα) r
(α)
βγ (uγ − uα)︸ ︷︷ ︸

II

 .

Note that the first term is always non-positive whereas the second term can be pos-
itive. The elementsr(α)

βγ , kαβ · sαγ in the second part of (8) form the entries
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of a local geometric matrixRα attached to the cellTα. If Kα is the matrix whose
rows are the vectorskαβ for β ∈ Vα thenRα = KαSα. The dimensionless op-
erator Rα is invariant under scaling of the grid and defines the linear mapping
Rα : (uγ − uα)γ∈Wα

7→ (uαβ − uα)β∈Vα
whereuαβ is defined by (1). We summa-

rize the main results of our study, see [HCC08, Hai08], as follows.

Theorem 1 ( Stability of the First Order Finite Volume Scheme ).If all recon-
struction coefficientssαγ are zero thend

dtE (t) ≤ 0 on arbitrary polyhedral meshes
regardless of the velocityc and the space dimensiond. ut

Theorem 1 and (8) suggest to choose reconstruction coefficients that minimize an
appropriate matrix norm ofRα = KαSα under the constraint (4).

Theorem 2 ( Minimization Property of the Least-squares Reconstruction ).The
least-squares reconstruction minimizes each singular value ofKαSα and therefore
all unitarily invariant matrix norms, in particular the Spectral, Frobenius, and the
Trace norms among the matrices satisfying (4).

For the least squares reconstruction, the influence of the stencil size on the matrix
Rα is characterized by

Theorem 3 ( Influence of the Stencil Size on the Reconstruction Matrix ).Let S̃α

be the least-squares slope reconstruction matrix. If cells are added to the reconstruc-
tion stencil, then the singular values as well as all unitarily invariant matrix norms
of Rα = KαS̃α are non-increasing. Furthermore, if{β1, . . . , βk} are the indices of
the newly added cells and if the family of vectors{hαβ1 , . . . ,hαβk

} has full rank
d then all unitarily invariant matrix norms as well as all strictly positive singular
values ofRα = KαS̃α are strictly decreasing.

Theorems 2 and 3 allow the following practical conclusions that have been tested
numerically in Sect. 4. First, the least-squares reconstruction should provide better
stability than alternative reconstruction methods. Second, larger stencil sizes should
increase the linear stability of the MUSCL scheme.

4 Numerical Computation of Spectra of MUSCL Operators

This section presents the numerical computations of spectra of (6) for two- and three-
dimensional grids on the unit square and the unit cube. The purpose of these calcu-
lations is to look for a correlation between the values ofRα and the appearance
of unstable eigenmodes and to test the conclusions at the end of Sect. 3. The test
cases include different grid types, reconstruction methods and stencil sizes. A pro-
gram written in MAPLE computes for each test case the matrix of (6) and its spectral
abscissa, defined byωJ = max {< (λ)|λ ∈ σ (J)} as well as the spectral norm of
Rα = KαSα for each cellTα. The numerical computations reveal a strong corre-
lation between the values ofRα and the existence of unstable eigenvaluesλ with
< (λ) > 0. The latter appear only on grids with cells where the spectral norm of
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Rα approaches or exceeds1. Recall that the matrixRα is dimensionless and scaling
invariant. The case where the largest values ofRα have been observed is the first
neighborhood slope reconstruction in three dimensions on tetrahedra and prisms.
For this case, the least-squares as well as the Green slope produce a small number of
unstable eigenmodes. For second neighborhood stencils, the second order accurate
slope can also produce unstable modes on tetrahedra that appear together with val-
ues of‖Rα‖ > 1. For all other cases, the values of‖Rα‖ are smaller than1 and no
unstable modes occur.

(a) First neighborhood (b) Second neighborhood

Fig. 1. Spectra of the operator (6) for a tetrahedral grid : Least-squares reconstruction on the
first and second neighborhood. For the former, two unstable eigenmodes are visible on the
right of the imaginary axis

5 Applications to Compressible Gas Dynamics

The conclusions of Sect. 3 have been put in practice to enhance the flow solver CE-
DRE. However, for an industrial software like CEDRE that is built to handle large
unstructured grids by parallelization it is preferable to avoid the implementation is-
sues of large reconstruction stencils. We have therefore adopted a different method
that can be coded by means of the first neighborhood connectivity only. In a first step,
the algorithm computes in each cell a slope using the least-squares reconstruction on
the first neighborhood. In a second step, the algorithm takes a weighted average of
these slopes over the first neighbors of each cell. Numerical computations of spectra
for the convection operator (6) show that this leads to a stable MUSCL discretiza-
tion of the linear advection equation. This slope reconstruction method has recently
been tested with CEDRE on unstructured grids for the subsonic flow over a deep 3D
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cavity and for a supersonic jet, see [LSM03, LRV05]. In the case of the flow over a
cavity, the scheme is stable with the new slope reconstruction without any limitation
on tetrahedral grids. Previously, this was only the case for simulations on structured
meshes. In the case of the jet, a slope limiter is still needed due to the presence of
steep temperature and pressure gradients but the simulation could be carried out with
a limiter that is less restrictive than the maximum principle presented in [BO04]. This
is impossible without the linear stability of the new robust reconstruction.

Fig. 2.Entropy for the flow over a deep 3D cavity, see [LSM03]
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