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Abstract. The evolution equation

∂

∂t
u = −

( ∂

∂x

)4
u+A(x)

( ∂

∂x

)2
u+A′(x)

( ∂

∂x

)
u−B(x)u+ f, x ∈ Ω = [0, 1], t ≥ 0,

is considered. A discrete parabolic methodology is developed, based on a discrete elliptic (fourth-order) calculus.

The main ingredient of this calculus is a discrete biharmonic operator (DBO). In the general case, it is shown that
the approximate solutions converge to the continuous one. An “almost optimal” convergence result (O(h4−ε)) is

established in the case of constant coefficients, in particular in the pure biharmonic case. Several numerical test

cases are presented, that not only corroborate the theoretical accuracy result, but also demonstrate high-order
accuracy of the method in nonlinear cases. The nonlinear equations include the well studied Kuramoto-Sivashinsky

equation. Numerical solutions for this equation are shown to approximate remarkably well the exact solutions.

The numerical examples demonstrate the great improvement achieved by using the DBO instead of the standard
(five-point) discrete bilaplacian.

1. INTRODUCTION

Let Ω = [0, 1] and consider the linear evolution equation associated with the general one-dimensional fourth-order
elliptic operator

(1.1) LA,Bz(x) =
( d
dx

)4

z(x)−A(x)
( d
dx

)2

z(x)−A′(x)
( d
dx

)
z(x) +B(x)z(x).

The associated evolution equation is therefore ,

(1.2)

∂

∂t
u(x, t) = −LA,Bu(x, t) + f(x)

= −
( ∂
∂x

)4

u(x, t) +A(x)
( ∂
∂x

)2

u(x, t) +A′(x)
( ∂
∂x

)
u(x, t)−B(x)u(x, t) + f(x), x ∈ Ω = [0, 1], t ≥ 0,

where we assume that

(1.3) A(x), B(x), f(x) are real continuous functions, and A(x) ∈ C1(Ω).

The equation is supplemented by the initial data

u(x, 0) = u0(x),

and homogeneous boundary conditions

(1.4) u(0, t) =
∂

∂x
u(0, t) = u(1, t) =

∂

∂x
u(1, t) = 0, t ≥ 0.

The initial function u0 is assumed to be sufficiently smooth, and for simplicity we take u0 ∈ C∞(Ω). To justify
our interest in this equation, we can gratefully quote from the Introduction of [27]: “In recent years, fourth-
order problems have also become important in image processing and for modeling diffusion processes in physics
and material sciences.” This paper deals with high-order discrete approximations to (1.2), and is a sequel to the
“elliptic” paper [8]. It builds on the premise of a discrete functional calculus. The approximation procedure consists
of functions and operators that are defined on a fixed grid; every ingredient of the continuous theory (not only
functions and operators but also fundamental properties such as coercivity) has its discrete counterpart. There
is no reference to any piecewise continuous functions, as would be the case with finite element or discontinuous
Galerkin methods. An important feature of the discrete operators is their compactness, namely, depending only
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on nearest neighbors. The convergence of the discrete solutions to the exact one is measured solely on the grid, as
it is being refined. A complete convergence proof in the general linear case is presented. In the constant coefficient
case it is shown to be “almost optimal”, as is further discussed below. This discretization methodology enables us
to go beyond the linear case and consider the approximation to various well-known nonlinear evolution equations.
Since it has already been extensively implemented for the 2−D Navier-Stokes system (see further below), we have
chosen here to test it on the Kuramoto-Sivashinsky equation. This is carried out in the last section of the paper.

There is vast literature pertaining to the discrete approximation of higher order (in the spatial coordinates)
evolution equations. The studies are divided to “categories” reflecting either interest in specific physical application
or accounting for a particular numerical method. It would take a very comprehensive survey, beyond the scope of
this paper, to give a full account of the literature. We shall just mention six representative examples (all including
extensive bibliographies).

• The papers [9, 11, 23] focus mainly on the issue of an accurate discrete time stepping. The first deals with
the biharmonic modified forward time-stepping; the highest order biharmonic operator is treated implicitly.
The second deals with extensions of the IMEX approach to high order semi-implicit schemes, mostly to
second-order (in space) reaction-diffusion equations. The third introduces the modified exponential time-
differencing (ETD) method; the linear (say, biharmonic) part is eliminated by an “integrating factor”, so
that the nonlinear term can be separately handled by a suitable Runge-Kutta method.

• In [9] the physical models of interest are the evolution of thin films and phase fields. The underlying
assumption is that the fourth-order (spatial) elliptic problem at each step is accurately handled. In par-
ticular, periodic boundary conditions are imposed, avoiding the issue of boundary layers. The same type
of physical applications is considered in [2], which provides an overview of finite volume and finite element
methods, in one or two space dimensions.

• The adaptive mesh methodology in [27] is applied to the Cahn-Hilliard equation modeling phase separation.
The spatial part is handled using collocation by (piecewise) seventh-order Hermite polynomial.

• In the area of image processing various models involving fourth-order evolution equations are extensively
studied. In [20] a non-linear fourth-order equation, which is used for noise reduction and simplification
of two dimensional images, was investigated for the existence and uniqueness of solutions of the problem.
In [19] a Navier-Stokes system in streamfunction formulation with a non-linear viscosity term was proposed
and tested for image impainting. In [26] fourth-order partial differential equations were used for noise
removal of Magnetic Resonance Images.

• In [32, Section 3] a local discontinuous Galerkin (LDG) method is developed for biharmonic type equa-
tions, primarily in one space dimension. Their method is based on introducing new unknowns (related to
successive derivatives of the solution) and then approximating the resulting first-order system. In [13] this
reduction was circumvented by using fluxes (at cell boundaries) associated with higher order derivatives.

• Optimal error analysis was carried out on finite element methods in the following papers. In [14] the
author approximates a fourth-order time dependent differential equation by a finite element method and
establishes optimal error estimates for the semi-discrete case. In [32, Section 3], an optimal convergence
rate for the LDG method mentioned above was achieved. In [21] the authors treat the biharmonic problem
using a conformal bicubic Hermite polynomial. Using interpolation theory it may be shown that if the
solution is smooth enough then the error is bounded by Ch4, where h is the mesh size.

It should be emphasized that all treatments of the time dependent problems rely on a careful high order
approximation of the biharmonic operator. Recently various LDG methods were proposed. A main tool is the
interior penalty procedure, that must be properly chosen [30]. It is beyond the scope of this paper to compare the
compact scheme used here for ∂4

x with any variant of the DG methodology. We refer to [8] for a further discussion
on this topic.

One of the oldest instances of physical models in which the biharmonic operator plays a crucial role is the 2−D
Navier-Stokes system in pure streamfunction formulation [6]. Indeed, the present study grew out of earlier work
on high order approximation of this system [3, 4, 24].

The one-dimensional scheme was already extended to a two dimensional one in [5]. A non-optimal analysis was
carried out for a second order compact scheme for the full nonlinear Navier-Stokes system in [4]. It was shown
that the convergence rate is at least 3/2. That is suboptimal compared to the actual convergence rate (order 2),
that was verified in numerical results.
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In [7] we developed a fast direct solver in two dimensions for the biharmonic problem in a rectangular grid. It
is based on FFT expansions and on the Sherman-Morrison formula.

Our convergence analysis here is different from standard Summation by Parts arguments. Instead, it is based
on a detailed discrete functional calculus. It runs parallel to the classical PDE theory and allows us to establish in
a fully discrete context the coercivity properties of the operators (see Section 3). In turn these properties enable
us to prove convergence, not only for the solution but also for its derivatives. In fact, the optimal (4-th order)
convergence of the discrete biharmonic operator ( see Claim 4.1 below) was established in [6, Chapter 10] by
invoking matrix methods. We refer to [8] for a detailed discussion.

The paper is organized as follows. In Section 2 we recall the basic well-posedness facts related to Equation (1.2)
and in Section 3 we review the construction of the discrete (elliptic) operators, the analogs of the second-order
and fourth-order derivatives. In particular, the discrete biharmonic operator (DBO) is defined in (3.11). The
construction of the discrete operators depends in a fundamental way on the concept of Hermitian derivative,
which is defined in (3.9). The present paper aims at proving (in the general case) the convergence of the discrete
approximation to the continuous solution and establishing (in the constant coefficient case) the significant (from
both theoretical and practical aspects) “high-order” accuracy of the approximation. The crucial point in obtaining
such estimates is that the discrete operators possess the fundamental elliptic properties (such as coercivity), in full
analogy with the continuous elliptic operators.

In Section 4 we study the pure biharmonic evolution equation, and prove the “almost optimal” convergence rate
(see below a more detailed explanation). We treat this case first because of its great importance as a model in
many classical problems of mathematical physics, such as elasticity theory or the streamfunction formulation of
the 2−D Navier-Stokes system.

In Section 5 we introduce (Equation (5.1)) the discrete elliptic operator LA,B,h, which is the discrete analog to
LA,B . The semi-discrete equation, analogous to (1.2) is given in (5.2):

∂

∂t
v(xj , t) = −LA,B,hv(xj , t) + f∗(xj), 1 ≤ j ≤ N − 1, t ≥ 0.

The unknown function v(xj , t) is a grid function defined on the discrete spatial grid and on the continuous time
variable. By the “convergence of the scheme” we mean the convergence (in an appropriate sense) of the functions
(in time) v(xj , t), t ≥ 0 to the corresponding restrictions of the exact solution u(xj , t), t ≥ 0 as the number N of
the grid points increases. The convergence of the discrete scheme to the exact solution is stated in Theorem 5.3.

In Section 6, the general constant coefficient case (A(x) ≡ a, B(x) ≡ b) is studied. We show that it can be
reduced to the pure biharmonic case. To measure the accuracy of the scheme, we estimate the difference between
the grid function and the restriction of the exact solution in terms of a power O(hβ), where h = 1

N is the mesh size
(we consider here only uniform meshes). The exponent β > 0 is the “order of accuracy”. An estimate with β = 4
is an “optimal ” convergence rate. Even though we believe (based on the numerical test cases) that our scheme
yields the optimal convergence rate, it remains an open problem (even for the pure biharmonic case). We are able
to show (Theorem 6.2) only “almost optimal” convergence rate, meaning that we can take β = 4− ε for any ε > 0
(but with a coefficient that may blow up as ε→ 0).

In Section 7 we present a collection of numerical examples that demonstrate the convergence properties claimed
in the preceding sections. It is worthwhile pointing out the great improvement in accuracy achieved by using the
DBO instead of the standard (five-point) bilaplacian. This is explicitly demonstrated in the fourth test case.

In fact, we go beyond the linear theory expounded here and present numerical simulations of several nonlinear
evolution equations. In particular, we consider the well-studied Kuramoto-Sivashinsky equation in the seventh test
case.

In the Appendix we give details of the Taylor expansions of the finite difference operators addressed in the
paper. For these expansions we give the nominal order, namely disregarding boundary conditions.

2. THE LINEAR EVOLUTION EQUATION–BASIC FACTS

As is well-known, non-homogeneous boundary conditions are accommodated by a modification of the right-
hand side function f(x). We use the standard notation for Sobolev spaces; Hp(Ω) is the space of functions with
(distributional) derivatives that are square integrable up to order p, while Hp

0 (Ω) is the closure of C∞0 (0, 1) in Hp.



4 MATANIA BEN-ARTZI, J.-P. CROISILLE, AND D. FISHELOV

Defining a function w(x, t) = ectu(x, t), for some positive constant c > 0, we see that w satisfies the equation

∂

∂t
w(x, t) = −LA,B+cw(x, t).

Remark that the initial and boundary conditions of w are identical to those of u. By taking c > 0 sufficiently large,
and without changing notation, we can therefore assume that LA,B is coercive in the sense that,

Claim 2.1. [1, Theorem 7.5] There exists a constant C > 0 such that, for every function z(x) ∈ H4(Ω), satisfying
the homogeneous boundary conditions

z(0) = z′(0) = z(1) = z′(1) = 0,

we have

(2.1)

1∫
0

LA,Bz(x) · z(x)dx ≥ C
1∫

0

[z′′(x)2 + z′(x)2 + z(x)2]dx.

By a standard argument about parabolic equations it follows that Equation (1.2) has a unique solution u(x, t).
Assume that the initial function u0 ∈ C∞(Ω). Note that in view of the homogeneous boundary conditions (1.4)

all time derivatives of the solution vanish on the boundary. By differentiating the equation N ≥ 1 times with

respect to t, and taking the scalar product with
(
∂
∂t

)N
u(x, t) we obtain

(2.2)

1

2

d

dt

1∫
0

∣∣∣( ∂
∂t

)N
u(x, t)

∣∣∣2dx = −
1∫

0

∣∣∣( ∂
∂x

)2( ∂
∂t

)N
u(x, t)

∣∣∣2dx
+

1∫
0

A(x)
∣∣∣ ∂
∂x

( ∂
∂t

)N
u(x, t)

∣∣∣2dx− 1∫
0

B(x)
∣∣∣( ∂
∂t

)N
u(x, t)

∣∣∣2dx.
The integrations-by-parts in the right-hand side are justified by the boundary conditions (1.4). Invoking the

Sobolev inequality (with φ =
(
∂
∂t

)N
u(x, t))

(2.3)

1∫
0

|φ′(x)|2dx ≤ ε
1∫

0

|φ′′(x)|2dx+ C(ε)

1∫
0

|φ(x)|2dx,

and taking a sufficiently small ε > 0 we infer that

(2.4)
d

dt

1∫
0

∣∣∣( ∂
∂t

)N
u(x, t)

∣∣∣2dx ≤ C 1∫
0

∣∣∣( ∂
∂t

)N
u(x, t)

∣∣∣2dx,
where C > 0 depends only on A(x), B(x). Gronwall’s lemma now yields

(2.5)

1∫
0

∣∣∣( ∂
∂t

)N
u(x, t)

∣∣∣2dx ≤ eCt 1∫
0

∣∣∣( ∂
∂x

)4N

u0

∣∣∣2dx, t ≥ 0.

The equation (1.2) enables us to replace temporal derivatives by spatial derivatives, to any order, so the Sobolev
embedding theorem yields, with a constant C(N,T, u0) > 0, depending only on u0, N, T,

(2.6) sup
x∈[0,1]

∣∣∣( ∂
∂t

)N
u(x, t)

∣∣∣ ≤ C(N,T, u0), t ∈ [0, T ].
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3. THE BASIC SETUP for DISCRETE APPROXIMATION

We equip the interval Ω = [0, 1] with a uniform grid

xj = jh, 0 ≤ j ≤ N, h =
1

N
.

The approximation is carried out by grid functions v defined on {xj , 0 ≤ j ≤ N} . The space of these grid functions
is denoted by l2h. For their components we use either vj or v(xj). For every smooth function G(x) we define its
associated grid function

(3.1) G∗j = G(xj), 0 ≤ j ≤ N.

Clearly G∗ depends on the parameter h = 1
N , but we do not indicate this dependence in order to simplify the

notation. The discrete l2h scalar product is defined by

(v,w)h = h

N∑
j=0

vjwj ,

and the corresponding norm is

(3.2) |v|2h = h

N∑
j=0

v2
j .

For linear operators A : l2h → l2h we use |A|h to denote the operator norm. The discrete sup-norm is

(3.3) |v|∞ = max
0≤j≤N

{|vj |} .

The discrete homogeneous space of grid functions is defined by

l2h,0 =
{
v ∈ l2h, v0 = vN = 0

}
.

Given v ∈ l2h,0 we introduce the basic (central) finite difference operators

(3.4)
(δxv)j =

1

2h
(vj+1 − vj−1), 1 ≤ j ≤ N − 1,

(δ2
xv)j =

1

h2
(vj+1 − 2vj + vj−1), 1 ≤ j ≤ N − 1.

The cornerstone of our approach to finite difference operators is the introduction of the Hermitian derivative
of v ∈ l2h,0, that will replace δx. It will serve not only in approximating (to fourth-order of accuracy) first-order
derivatives, but also as a fundamental building block in the construction of finite difference approximations to
higher-order derivatives. First, we introduce the “Simpson operator”

(3.5) (σxv)j =
1

6
vj−1 +

2

3
vj +

1

6
vj+1, 1 ≤ j ≤ N − 1.

Note the operator relation (valid in l2h,0)

(3.6) σx = I +
h2

6
δ2
x,

so that σx is an “approximation to identity” in the following sense. Let ψ ∈ C∞0 (Ω), then

(3.7) |(σx − I)ψ∗|∞ ≤ Ch2‖ψ′′‖L∞(Ω),

which yields

(3.8) |(σx − I)ψ∗|h ≤ Ch2‖ψ′′‖L∞(Ω).

In the above estimates the constant C > 0 is independent of h, ψ. The Hermitian derivative vx is now defined by

(3.9) (σxvx)j = (δxv)j , 1 ≤ j ≤ N − 1.
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Remark 3.1. In the definition (3.9), the values of (vx)j , j = 0, N, need to be provided , in order to make sense
of the left-hand side (for j = 1, N − 1). If not otherwise specified, we shall henceforth assume that, in accordance
with the boundary condition (1.4), vx ∈ l2h,0, namely

(vx)0 = (vx)N = 0.

In particular, the linear correspondence l2h,0 3 v→ vx ∈ l2h,0 is well defined, but not onto, since δx has a non-trivial
kernel.

We next introduce a fourth-order replacement to the operator δ2
x (see [17, Equation (15)], [6, Equation (10.50)(c)]),

(3.10) (δ̃2
xv)j = 2(δ2

xv)j − (δxvx)j , 1 ≤ j ≤ N − 1.

The biharmonic discrete operator (DBO) is given by (for v, vx ∈ l2h,0),

(3.11) δ4
xv =

12

h2
[δxvx − δ2

xv].

Note that, in accordance with Remark 3.1 the operator δ̃2
x is defined on grid functions v ∈ l2h,0, such that also

vx ∈ l2h,0. The connection between the two difference operators for the second-order derivative is given by

(3.12) −δ̃x
2

= −δ2
x +

h2

12
δ4
x.

Remark 3.2. Clearly the operators δx, δ
2
x, δ

4
x depend on h, but for notational simplicity this dependence is not

explicitly indicated.

Remark 3.3. For clarity, the Taylor expansions of the operators used are collected in the Appendix in Section A.

The fact that the biharmonic discrete operator δ4
x is positive (in particular symmetric) is proved in [6, Lemmas

10.9, 10.10]. Therefore its inverse
(
δ4
x

)−1

is also positive. Beyond just positivity, a fundamental tool (analogous

to classical elliptic theory) is the coercivity property (with C > 0 independent of h) [6, Propositions 10.11,10.13],

(3.13) (δ4
xz, z)h ≥ C(|z|2h + |δ2

xz|2h + |δxzx|2h),

valid for any grid function z ∈ l2h,0 such that also zx ∈ l2h,0. Owing to (3.10) we can add also

(3.14) (δ4
xz, z)h ≥ C|δ̃2

xz|2h.

Notation for time-dependent grid functions. A time-dependent grid function is denoted as {v(xj , t)}Nj=0 or

{vj(t)}Nj=0 . When there is no risk of confusion we simplify the notation , replacing {v(xj , t)}Nj=0 , {u
∗(xj , t)}Nj=0 by

v(t), u∗(t) respectively.

4. THE PURE BIHARMONIC GENERATOR

We first establish convergence estimates for the simple equation

(4.1)
∂

∂t
u = −

( ∂
∂x

)4

u, x ∈ Ω, t ≥ 0,

subject to initial data

u(x, 0) = u0(x),

and homogeneous boundary conditions

u(0, t) =
∂

∂x
u(0, t) = u(1, t) =

∂

∂x
u(1, t) = 0, t ≥ 0.

The initial function u0 is assumed to be sufficiently smooth, and we take for simplicity u0 ∈ C∞(Ω). The semi-
discrete analog of (4.1) is

(4.2)
∂

∂t
v(xj , t) = −δ4

xv(xj , t), 1 ≤ j ≤ N − 1, t ≥ 0,

subject to initial data

v(xj , 0) = (u∗0)j = u0(xj),
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and homogeneous boundary conditions

v(x0, t) = vx(x0, t) = v(xN , t) = vx(xN , t) = 0, t ≥ 0.

Here δ4
x is the discrete biharmonic operator (3.11). Clearly the grid function v(·, t) depends on h, but we refrain

from indicating it explicitly, as it will always be clear from the context (compare Remark 3.2). Occasionally
the simplified notation v(t) will be used instead of v(·, t), see the end of Section 3. We recall the basic optimal
convergence fact [6, Theorem 10.19]:

Claim 4.1. Let f(x) be a smooth function in Ω. Let g(x) satisfy( d
dx

)4

g(x) = f(x),

subject to homogeneous boundary conditions. Then

(4.3) |g∗ − (δ4
x)−1f∗|∞ = O(h4).

4.1. ALMOST OPTIMAL ERROR ESTIMATE–THE PURE BIHARMONIC CASE. We note that
Equation (4.1) can be rewritten as

(4.4)
∂

∂t

( ∂
∂x

)−4

u = −u, x ∈ Ω, t ≥ 0,

In view of Claim 4.1 (with − ∂
∂tu(·, t) playing the role of f and u(·, t) playing the role of g) we have, for any T > 0,

with O(h4) depending only on u0 and T,

(4.5)
∂

∂t

(
δ4
x

)−1

u∗(xj , t) = −u∗(xj , t) +O(h4), 1 ≤ j ≤ N − 1, 0 < t ≤ T.

Note that by definition ( ∂
∂t
u
)∗

(xj , t) =
∂

∂t
u∗(xj , t), 1 ≤ j ≤ N − 1, t ≥ 0.

Similarly, Equation (4.2) can be rewritten as

(4.6)
∂

∂t

(
δ4
x

)−1

v(xj , t) = −v(xj , t), 1 ≤ j ≤ N − 1, t ≥ 0.

The smoothness of the initial data implies the boundedness of all time derivatives of the solution, as stated in the
following claim.

Lemma 4.2. For every integer N ≥ 0

(4.7)
∣∣∣( ∂
∂t

)N
v(·, t)

∣∣∣
h
≤ |(δ4

x)Nu∗0|h, t ≥ 0.

Proof. Taking the scalar product of (4.2) with v(·, t) we have, due to the positivity of δ4
x,

1

2

∂

∂t
|v(·, t)|h = −(δ4

xv(·, t), v(·, t))h ≤ 0.

Thus |v(·, t)|h is a nonincreasing function of t and its value at t = 0 is |u∗0|h. This proves the claim for N = 0. We
then proceed to all N by repeated differentiation of (4.2) with respect to t, and noting that( ∂

∂t

)N
v(t = 0) = (−δ4

x)Nu∗0.

�

The difference between the exact solution and the discrete one is given by the “error” grid function

(4.8) e(t) = u∗(t)− v(t).

The following theorem gives an estimate for this error.

Theorem 4.3. For every ε > 0 and every T > 0 the error can be estimated by

(4.9) |e(t)|h ≤ Ch4−ε, t ∈ [0, T ], h < h0,

where C > 0 depends only on u0, T, ε.
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Proof. Define the grid function

(4.10) w(t) = (δ4
x)−1e(t) = (δ4

x)−1u∗(t)− (δ4
x)−1v(t).

Subtracting Equation (4.6) from Equation (4.5) we obtain

(4.11) w′(t) + e(t) = O(h4), t ∈ [0, T ],

with w(0) = 0. Taking the discrete scalar product of (4.11) with w and using the coercivity property (3.13), noting
that e(t) = δ4

xw(t), we get

(4.12)
d

dt
|w(t)|2h + C|w(t)|2h ≤ |(O(h4),w(t))h| ≤ O(h8) +

C

2
|w(t)|2h.

It follows from Gronwall’s inequality that

(4.13) |w(t)|h = O(h4), t ∈ [0, T ].

Take an integer Q > 1. We define a finite difference operator

(4.14) SQw(t) = (∆t)−1
M∑

k=−L

akw(t+ k∆t),

so that

(4.15) |SQw(t)−w′(t)| = O((∆t)Q), t ∈ [L∆t, T −M∆t].

Observe that we can find such a difference operator, to any order, since all time derivatives of w(t) are bounded
in the | · |h norm in view of the bounds (2.6), Lemma 4.2 and the uniform boundedness of the operator (δ4

x)−1 for
h < h0. Note also that M,L depend on Q. Plugging this into (4.11) we obtain

(4.16) SQw(t) + e(t) = O(h4) +O((∆t)Q), t ∈ [L∆t, T −M∆t],

and the estimate (4.13), applied to SQw(t), yields

(4.17) e(t) = O(h4) +O((∆t)Q) +O(
h4

∆t
), t ∈ [L∆t, T −M∆t].

Take now ∆t = h
4
Q . The last estimate yields

(4.18) e(t) = O
(
h4(1− 1

Q )
)
, t ∈ [Lh

4
Q , T −Mh

4
Q ].

Since Q can be taken arbitrarily large, the theorem is proved. �

5. A DISCRETE VERSION OF THE GENERAL EVOLUTION EQUATION

Using the finite difference operators introduced in Section 3, and taking h = 1
N , we introduce the discrete

operator analogous to LA,B that was defined in (1.1):

(5.1) [LA,B,hg]i = (δ4
xg)i −A∗i (δ̃2

xg)i − (A′)∗i (gx)i +B∗i gi, 1 ≤ i ≤ N − 1,

where f∗, A∗, (A′)∗, B∗ are the grid functions corresponding, respectively, to f(x), A(x), A′(x), B(x). In order
to formulate a semi-discrete analog of (1.2), we introduce the unknown grid function v(xj , t), depending on the
continuous time parameter. We do not indicate explicitly the obvious dependence on “h”, since this will be clear
from the context, as in Section 4. The semi-discrete equation is therefore

(5.2)
∂

∂t
v(xj , t) = −LA,B,hv(xj , t) + f∗(xj), 1 ≤ j ≤ N − 1, t ≥ 0,

subject to initial data
v(xj , 0) = (u∗0)j = u0(xj),

and homogeneous boundary conditions

v(x0, t) = vx(x0, t) = v(xN , t) = vx(xN , t) = 0, t ≥ 0.

Remark 5.1. We assume that all grid functions and their Hermitian derivatives are in l2h,0. This amounts simply

to extending the grid functions (whose relevant values are at the interior points {xi, 1 ≤ i ≤ N − 1}) as zero at
the endpoints x0, xN .
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In the proof of the convergence theorem below, an important ingredient is the coercivity of the operator, in
analogy with Claim 2.1. It is actually a generalization of (3.13) that played a fundamental role in the case of the
pure biharmonic generator.

Lemma 5.2. By adding to B(x) a sufficiently large constant K > 0, the following coercivity inequality holds.
There exist positive constants C, h0 > 0 such that, for every grid function z ∈ l2h,0, where also zx ∈ l2h,0, we have

(5.3) (LA,B,hz, z)h ≥ C
[
|δ̃2
xz|2h + |zx|2h + |z|2h

]
, 0 < h < h0.

Proof. We have

(LA,B,hz, z)h = (δ4
xz, z)h − (A∗δ̃2

xz, z)h − ((A′)∗zx, z)h + (B∗z, z)h

≥ (δ4
xz, z)h − ε[|δ̃2

xz|2h + |zx|2h]− β

ε
|z|2h + (B∗z, z)h,

where we have used the Cauchy-Schwarz inequality and set β = |A∗|2∞ + |(A′)∗|2∞.
In view of (3.13) and (3.14) we can take ε > 0 sufficiently small and then add a suitable constant K > 0 to B∗

so that (5.3) is satisfied. �

The basic convergence result here is that “stability” implies “convergence” as follows.

Theorem 5.3. [General convergence] Let u(x, t) be the solution to (1.2) and let v(xj , t) be the solution to (5.2).
Let

e(t) = u∗(t)− v(t)

(compare (4.8)). Then, for every T > 0, we have the following convergence result:

(5.4) lim
h→0

sup
0≤t≤T

|e(t)|h = 0.

Proof. The coercivity property stated in Lemma 5.2 implies, exactly as in the discussion prior to Claim 2.1, that
by adding a sufficiently large constant c > 0 to B(x), without changing notation, we can assume that LA,B,h
satisfies (5.3). Let τ(h) = o(h) be the truncation error arising in the application of the discrete operator LA,B,h to
the grid function u∗(xj , t), namely

(5.5)
∂

∂t
u∗(xj , t) = −LA,B,hu∗(xj , t) + f∗(xj) + τ(h), 1 ≤ j ≤ N − 1.

Observe that τ(h) is in fact also a function of t, such that for any ε > 0 and T > 0 there exists h0 > 0 so that

(5.6) |τ(h)|h ≤ εh, 0 < h < h0, 0 ≤ t < T.

Subtracting (5.2) from (5.5) we obtain (using the simplified notation for time dependent grid functions)

(5.7)
∂

∂t
e(t) = −LA,B,he(t) + τ(h).

Taking the scalar product (in l2h,0) of (5.7) with e(t) and using the coercivity inequality (5.3) yields

(5.8)
1

2

d

dt
|e(t)|2h ≤ −

1

2
C|e(t)|2h +

2

C
|τ(h)|2h,

where the Cauchy-Schwarz unequality was used to estimate the scalar product (τ(h), e(t))h. In view of (5.6) and
Gronwall’s inequality the proof is complete. �

6. THE LINEAR EVOLUTION EQUATION WITH CONSTANT COEFFICIENTS

In Equation (1.2) we now consider the case A(x) ≡ a, B(x) ≡ b, f ≡ 0, where a, b are real constants. Using the
operator notation (compare (1.1))

La,bz =
( d
dx

)4

z − a
( d
dx

)2

z + bz,

the equation takes the form

(6.1)
∂

∂t
u(x, t) = −La,bu(x, t), x ∈ Ω, t ≥ 0.

The equation is supplemented with initial data

u(x, 0) = u0(x),
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and homogeneous boundary conditions

u(0, t) =
∂

∂x
u(0, t) = u(1, t) =

∂

∂x
u(1, t) = 0, t ≥ 0.

The initial function u0 is assumed to be smooth, namely u0 ∈ C∞(Ω). As already observed above (see (2.1)) by
taking the constant b sufficiently large the coercivity can be assumed :

(La,bz, z)L2(Ω) ≥ C
[
‖z′′‖2L2(Ω) + ‖z′‖2L2(Ω) + ‖z‖2L2(Ω)

]
.

Next we introduce the corresponding discrete operator (as in (5.1))

La,b,hv(xj , t) = δ4
xv(xj , t)− aδ̃2

xv(xj , t) + bv(xj , t), 1 ≤ j ≤ N − 1.

The coercivity in the general case (5.3) yields in this special case the following estimate (for b > 0 sufficiently
large).

(6.2) (La,b,hz, z)h ≥ C
[
|δ̃2
xz|2h + |zx|2h + |z|2h

]
, 0 < h < h0,

valid for every grid function z ∈ l2h,0, such that also zx ∈ l2h,0.
Claim 2.1 and (6.2) imply in particular that the operators La,b, La,b,h are invertible and the norms

{
|L−1
a,b,h|h, 0 < h < h0

}
are uniformly bounded. Throughout the rest of this section we assume that b > 0 is sufficiently large, as stipulated
in these claims. The semi-discrete analog of (6.1) is

(6.3)
∂

∂t
v(xj , t) = −La,b,hv(xj , t), 1 ≤ j ≤ N − 1, t ≥ 0,

subject to initial data

v(xj , 0) = (u∗0)j = u0(xj), 1 ≤ j ≤ N − 1.

and homogeneous boundary conditions

v(x0, t) = vx(x0, t) = v(xN , t) = vx(xN , t) = 0, t ≥ 0.

In analogy with (4.4) we can rewrite (1.2) as

(6.4)
∂

∂t

(
L−1
a,bu(x, t)

)
= L−1

a,b

( ∂
∂t
u(x, t)

)
= −u(x, t), x ∈ Ω, t ≥ 0.

Similarly, the analog of (4.6) is

(6.5)
∂

∂t

(
L−1
a,b,hv(xj , t)

)
= L−1

a,b,h

( ∂
∂t

v(xj , t)
)

= −v(xj , t), 1 ≤ j ≤ N − 1, t ≥ 0.

The crucial element in our treatment is the “optimal” estimate for the (constant coefficient) elliptic case, which
extends the same one in the pure biharmonic case (Claim 4.1).

Claim 6.1. [8, Theorem 5.7] Let f(x) be a smooth function in Ω. Let g(x) satisfy

La,bg(x) = f(x),

subject to homogeneous boundary conditions. Then

(6.6) |g∗ − L−1
a,b,hf

∗|∞ = O(h4).

We can now apply Claim 6.1 to Equation (6.4), where ∂
∂tu(x, t) corresponds to f, while −u corresponds to g.

We infer that

(6.7) L−1
a,b,h

( ∂
∂t
u∗(xj , t)

)
= −u∗(xj , t) +O(h4).

Defining the error grid function e(t) = u∗(t)− v(t) (compare (4.8)) we obtain, by subtracting (6.5) from (6.7)

(6.8)
∂

∂t
L−1
a,b,he(t) = −e(t) +O(h4).

The following theorem gives the “almost optimal” convergence estimate for the general equation and constitutes a
generalization of Theorem 4.3.
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Theorem 6.2. Suppose that u0 ∈ C∞(Ω). For every ε > 0 and every T > 0 the error e(t) can be estimated by

(6.9) |e(t)|h ≤ Ch4−ε, t ∈ [0, T ], h < h0,

where C > 0 depends only on u0, T, ε.

Proof. Define the grid function

(6.10) w(t) = L−1
a,b,he(t) = L−1

a,b,hu
∗(t)− L−1

a,b,hv(t).

From Equation (6.8) we get

(6.11) w′(t) + e(t) = O(h4), t ∈ [0, T ],

with w(0) = 0. This equation is identical to Equation (4.11), so that the proof proceeds verbatim as that of
Theorem 4.3. Note that instead of using the coercivity property (3.13), we use here the coercivity property (6.2). �

7. NUMERICAL EXAMPLES - LINEAR AND NONLINEAR

Theorem 5.3 dealt with a general convergence result for linear equations with variable coefficients while The-
orem 6.2 established an almost fourth-order accuracy of the semi-discrete scheme (6.3), in the case of constant
coefficients. In this section, we first corroborate the assertion of Theorem 6.2 by four numerical test cases with
constant coefficients. Indeed, the numerical results yield a full fourth-order accuracy. We then consider a linear
equation with variable coefficients in the fifth test case. The excellent approximation (to known analytical solu-
tions) achieved by employing the same difference operators is indicative of the applicability of the methodology
developed here to more general evolution equations. Then, with the sixth and seventh test cases, we go beyond
the linear setting that has been the subject matter of the general convergence theory expounded hitherto and
demonstrate the effective fourth-order accuracy on several nonlinear biharmonic equations. This includes numer-
ical solutions of the well-known Kuramoto-Sivashinsky equation, modelling the evolution of flame fronts (as well
as other physical phenomena).

Discrete time stepping: Notice that in the convergence theory of the preceding sections we have used a
“semi-discrete” scheme; the time variable was continuous. Numerical implementation necessitates discrete time
intervals. Semi-discrete equations considered hereafter have the general form

(7.1) ∂tv = −δ4
xv + L(v) +H(v) + F (t) = R(v, t),

where L is linear in v, vx, δ̃
2
xv and H is nonlinear is v, vx. F (t) = [F1(t), . . . , FN−1(t)] is a time-dependent forcing

function.
Two time stepping schemes are considered. The first one is the two stage Radau-IIA scheme. It is an IRK

(Implicit Runge-Kutta) scheme, of third order accuracy, with A- and L-stability. Using this scheme allows to focus
only on observing the accuracy in space. This is true in particular for linear problems. In the computation, due
to the third order accuracy in time, the time step is selected according to a relation ∆t = Ch4/3. The matrix A of
the Radau-IIA scheme is [12, chap. 3, pp. 225]

(7.2) A =

[
a11, a12

a21, a22

]
=

 5
12 − 1

12

3
4

1
4

 .
The stage time values are ∆t/3 and ∆t, respectively. The scheme is expressed as

(7.3)


ξ1 = un + ∆t

(
a11R(ξ1) + a12R(ξ2)

)
,

ξ2 = un + ∆t
(
a21R(ξ1) + a22R(ξ2)

)
with un+1 = ξ2 (FSAL1 property). The system (7.3) is solved by Newton iterations. The second time stepping
scheme is the IMEX (IMplicit-EXplicit) scheme already used in [3]. Here, it is used only for the Kuramoto-
Sivashinski equation (test cases 7 hereafter). As a rule, we denote by u∗,n (see (3.1)) the grid values, at time level

1First Same As Last
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t = tn, of the exact solution. The discrete solution at this time level is designated as vn. The computational errors
are designated as follows.

(7.4) |en|h = |vn − u∗,n|h the error (of the computed solution) in the discrete l2h norm, as in (3.2),

(7.5) |enx |h =
∣∣∣vnx − (∂u∂x)∗,n∣∣∣h the error , using discrete l2h norm, for the x− derivative of the solution.

Note that vnx is the Hermitian derivative (with respect to x) of vn. However we compare to the exact derivative
∂u
∂x and not to the Hermitian derivative (u∗)nx . We shall also use the sup norm (see (3.3)) |en|∞ = |vn − u∗,n|∞.
Recall that en, as a grid function, depends on h. To display the convergence rate, we make it explicit by wrrting
enh. Then the convergence rate between the error eh and eh/2 is calculated by Log2(|eh|/|eh/2|).

7.1. First test case: periodic biharmonic equation. We consider on the interval I = [0, 2π) the biharmonic
equation

(7.6)


∂

∂t
u = −

( ∂
∂x

)4

u, x ∈ I, t ≥ 0

u(x, 0) = u0(x) = sin(x), x ∈ I.

When periodic boundary conditions are applied, the solution is u(x, t) = sin(x) exp(−t). The semi-discrete scheme
is

(7.7)


dvj(t)

dt
= −δ4

xvj(t), j = 0, 1, ..., N − 1,

vN (t) = v0(t), t ≥ 0,

vj(0) = (u∗0)j := u0(xj), j = 0, ..., N.

The discrete time-stepping is the Radau-IIA time scheme (7.3). The periodic boundary conditions make this
test case easier to implement compared to the case of homogeneous boundary conditions. However, it enables us
to focus on the spatial accuracy of the discrete biharmonic operator δ4

x. In Table 1, the accuracy of the scheme
is compared to the piecewise cubic discontinuous Galerkin method of [32] (without local postprocessing). Both
schemes are fourth-order accurate in space. The error levels are of the same order of magnitude for the two cases.

7.2. Second test case: polynomial initial data. We consider the equation

(7.8)



∂

∂t
u = −

( ∂
∂x

)4

u+ a
( ∂
∂x

)2

u− bu+ f(x, t), 0 < x < 1, t ≥ 0

u(0, t) =
∂

∂x
u(0, t) = 0, u(1, t) =

∂

∂x
u(1, t) = 0, t ≥ 0

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

The semi-discrete analog to (7.8) is (compare (6.3))

(7.9)


dvj(t)

dt
= −δ4

xvj(t) + a δ̃2
xvj(t)− b vj(t) + f∗j (t), j = 1, ..., N − 1, t ≥ 0,

v0(t) = 0, vN (t) = 0, vx,0(t) = 0, vx,N (t) = 0, t ≥ 0

vj(0) = (u∗0)j := u0(xj), j = 0, ..., N.

We picked a = 1, b = −1 in (7.8) with exact solution u(x, t) = x4(1 − x)4et. The initial condition is therefore
u0(x) = x4(1− x)4. The function f(x, t) is chosen so that (7.8) is satisfied. Note that in Claim 2.1 it was required
that b > 0 in order to ensure coercivity, and in particular that zero is not an eigenvalue of La,b,h. However, for any
value of b ∈ R, if we know that zero is not an eigenvalue, then the discrete scheme has the “almost optimal” rate
of convergence. Indeed, coercivity is restored (without changing the scheme) by multiplying the discrete equation
by a suitable function ect (see the beginning of the proof of Theorem 5.3). Several runs were performed with
successively refined meshes. Due to third-order accuracy of the Radau-IIA scheme, we picked ∆t = Kh4/3, where
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the constant K is adjusted so that 8 iterations are performed for N = 8. The numerical results are displayed in
Table 2 and Figure 1.
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Figure 1. Exact and calculated solution for (7.8) with a = 1, b = −1 and u(x, t) = x4(1− x)4et

at final time tf = 10. Left: N = 8, center: N = 16, right: the estimated convergence rate in the

maximum (circles) and l2h (squares) norms is 4. Radau-IIA time scheme with ∆t = Kh4/3.There
are 8 time interations with the grid N = ∗. The error level at final time is excellent, even on the
coarse grid N = 8.

7.3. Third test case: highly oscillating solution. We consider again Equation (7.8), but now the exact
solution is

(7.10) uε(x, t) = p(x) sin
(
1/qε(x)

)
sin(2πt).

The polynomial functions p(x) and qε(x) are given by

(7.11) p(x) = 16x2(1− x)2, qε(x) = (x− 1/2)2 + ε, ε > 0.

The parameter ε has to be adjusted so that the function uε(x, t) oscillates faster in the middle of the interval [0, 1].
In this example we took ε = 0.05. Numerical results using the Radau-IIA time scheme are displayed in Table 3 and
Figure 2. The results, even for the very coarse grid with N = 32, show the remarkable accuracy of the scheme.
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Figure 2. Exact and calculated solution u(x, t) = p(x) sin(1/qε(x)) sin(2πt) for Equation (7.8)
ε = 0.05, at final time tf = 0.75. The number N of grid points is N = 32, N = 64, N = 128
and N = 256. The convergence rate is indicated at final time tf = 0.75. Left: N = 32, center:
N = 256, right: the observed convergence rate is close to 4 in the max norm (circles) and the l2h
norm (squares). Radau-IIA time scheme with ∆t = Kh4/3.There are 10 time interations with the
grid N = 32. Notice the good error level, even on the coarse grid N = 32, with 10 time iterations.
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7.4. Fourth test case: linear equation with spectral damped solution. We use this example to assess the
difference between the discrete operators δ4

x, (δ2
x)2, both of which serve to approximate the fourth-order derivative.

Let ϕk(x) (resp. µk) be the k-th eigenfunction (resp. k-th eigenvalue) of the spectral problem

(7.12)
( d
dx

)4

ϕ(x) = µϕ(x),

with homogeneous boundary conditions

(7.13) ϕ(0) =
d

dx
ϕ(0) = 0, ϕ(1) =

d

dx
ϕ(1) = 0.

The eigenfunctions are analytically known, see for example [15, 18]. We consider the time dependent problem

(7.14)



∂

∂t
u(x, t) = −

( ∂
∂x

)4

u(x, t) + (µk −
1

τ
)u(x, t), 0 < x < 1, t ≥ 0,

u(0, t) = 0,
∂

∂x
u(0, t) = 0, t ≥ 0

u(1, t) = 0,
∂

∂x
u(1, t) = 0, t ≥ 0

u(x, 0) = ϕk(x), k ≥ 1, 0 ≤ x ≤ 1.

Here τ > 0 is a parameter. The exact solution is given by the damping in time of the initial function ϕk(x),

(7.15) u(x, t) = ϕk(x) exp(−t/τ).

The aim here is to recover a similar behavior for the discrete solution. With the notation of Section 6 we have

(7.16) a = 0, b = −(µk − 1/τ), f(x, t) = 0.

In the numerical example we took k = 10 and τ = 10
µk
, leading to b = − 9

10µk.

We use this example also to consider the difference between two semi-discrete schemes for (7.14). The first
consists of (see (5.2)):

(7.17)



dvj(t)

dt
= −δ4

xvj(t) + (µk −
1

τ
)vj(t), j = 1, . . . , N − 1, t ≥ 0,

v0(t) = 0, vN (t) = 0, t ≥ 0

vx,0(t) = 0, vx,N (t) = 0, t ≥ 0

vj(0) = ϕ∗k,j := ϕk(xj).

The second scheme replaces the compact δ4
x by the standard five-point discrete biharmonic given in [10]:

(7.18) (δ2
x)2vj =

vj+2 − 4vj+1 + 6vj − 4vj−1 + vj−2

h4
, j = 2, . . . , N − 2.

This scheme needs to be supplemented by an appropriate meaning for (δ2
x)2vj at the near-boundary points j =

1, N − 1, taking into account the Dirichlet boundary conditions as in (7.17). In [10] this is accomplished by a
quadratic extrapolation based on the value at the near-boundary point; for j = 1 the imposed boundary values
v0 = vx,0 = 0 are used, along with the value v1, obtaining an extrapolated value at the “ghost” point j = −1.
Using this extrapolation approach leads to a formula for (δ2

x)2v1 given by

(7.19) (δ2
x)2v1 =

7v1 − 4v2 + v3

h4
.
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Figure 3. The eigenfunction ϕ10 of the spectral problem (7.12) associated to the eigenvalue µ10.

A similar approximation is applied at j = N − 1. The operator (δ2
x)2 is second order at points 2 ≤ j ≤ N − 2. The

associated semi-discrete scheme is

(7.20)



dvj(t)

dt
= −(δ2

x)2vj(t) + (µk −
1

τ
)vj(t), j = 1, . . . , N − 1, t > 0,

v0(t) = 0, vN (t) = 0, t ≥ 0,

vx,0(t) = 0, vx,N (t) = 0, t ≥ 0,

vj(0) = ϕ∗k,j := ϕk(xj), j = 1, . . . , N − 1,

Fig. 3 displays the oscillating shape of the eigenfunction ϕ10. Note that ϕ10 is antisymmetric with respect to the
point x = 1

2 . The corresponding eigenvalue is µ10 ' 11, 410, 019.97. The parameter τ represents a damping effect

in time. The selected value is τ = 10
µ10

. The grids are N = 8, 16, 32, 64 and N = 128. The final time is tf = 1/µ10.

Fig. 4 represents the numerical convergence history for the schemes (7.17) and (7.20). In Figs. 5 and 6 the results
of the schemes (7.17) and (7.20) are compared at final time for N = 32 and N = 64. The superiority of the
operator δ4

x over the operator (δ2
x)2 is clearly observed: with N = 32 the scheme (7.17) is more accurate than the

scheme (7.20) with N = 64.

7.5. Fifth test case: linear equation with non constant A(x) and B(x). We consider the function

(7.21) u(x, t) = U(x) exp(ωt), U(x) = exp

(
− 1

x(1− x)

)
.

The graph of U(x) is displayed in Fig. 7. Note that U(0) = U(1) = U ′(0) = U ′(1) = 0. The derivatives of U(x)
are given by

(7.22) U (n)(x) =
pn(x)

qn(x)
U(x).

The polynomials p1(x) and q1(x) are

(7.23) p1(x) = 1− 2x, q1(x) = x2(1− x)2.

For n ≥ 2, the following recursion relations hold

(7.24)

{
pn+1 = q1(p′nqn − q′npn) + qnpnp1,
qn+1 = q2

nq1.

The polynomial qn is qn = q2n−1
1 . We consider the operator LA,B (1.1) applied to u(x, t), where A(x) and B(x)

are selected below in (7.29) and (7.27) respectively. Recall that

(7.25) LA,Bu(x, t) = ∂4
xu(x, t)− ∂x(A(x)∂xu(x, t)) +B(x)u(x, t).
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(a) Convergence rate for the scheme (7.17) at final time tf =
1/µ10 after time-stepping.
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(b) Convergence rate for the scheme (7.20) at final time tf =
1/µ10 after time-stepping.

Figure 4. Convergence rates for the discrete approximations to the time dependent equation
(7.14). (a): convergence rates for (7.17). (b): convergence rates for (7.20). For both subfigures:
N = 8, N = 16, N = 32, N = 64 and N = 128. (a): fourth order convergence rates with excellent
error values for δ4

x. (b): second order convergence rates with poor accuracy for (δ2
x)2.
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(a) Scheme (7.17) with δ4x and the grid N = 32
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(b) Scheme (7.17) with δ4x and the grid N = 64

Figure 5. Approximate and exact solution at final time tf = 1/µ10. The equation (7.14) is
approximated by (7.17). The biharmonic operator is approximated by the fourth order operator
δ4
x. In the left panel, the grid size is N = 32. In the right panel, the grid size is N = 64. In both

cases, the approximate solution is remarkably close to the exact one.

Using (7.24) we get

(7.26)

(∂t + LA,B)u(x, t) = ωU(x) exp(ωt) +
p4(x)

q4(x)
U(x) exp(ωt)

− ∂x
(
A(x)

p1(x)

q1(x)
U(x)

)
exp(ωt) +B(x)U(x) exp(ωt).
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(a) Scheme (7.20) with (δ2x)2, N = 32
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(b) Scheme (7.20) with (δ2x)2, N = 64

Figure 6. Approximate and exact solution at final time tf = 1/µ10. The equation (7.14) is
approximated by (7.20). The biharmonic operator is approximated by the second order operator
(δ2
x)2. In the left panel, the grid size is N = 32. In the right panel, the grid size is N = 64. In

both cases, the approximate solution is far from the exact one.

Figure 7. The function U(x) = exp(− 1
x(1−x) ).

Given a function A(x), if we define the function B(x) to be

(7.27)

B(x) = −ω − p4(x)

q4(x)
+A′(x)

p1(x)

q1(x)
+A(x)

(
p1(x)

q1(x)

)′
+A(x)

(
p1(x)

q1(x)

)2

= −ω − p4(x)

q4(x)
+A′(x)

p1(x)

q1(x)
+A(x)

(
p2(x)

q2(x)

)
.

we see readily that u(x, t) is the solution of the equation

(7.28) ∂tu(x, t) = −LA,Bu(x, t).

We take

(7.29) A(x) = 1 + 0.1 sin(2πkx),

and the corresponding function B(x) is determined by (7.27). We then consider Equation (7.28) with the initial
condition u(x, 0) = U(x) and and the semi-discrete approximation (see (5.2))

(7.30) ∂tv(t) = −LA,B,hv(t),
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Figure 8. Equation (7.28) approximated by (7.30) with A in (7.29) and B in (7.27). The initial
time is ti = 0. Results are shown at final time tf = 3. Left panel: N = 32, the convergence in
space is not achieved. Center panel: N = 64, the convergence in space is achieved. Right panel:
convergence rate in the maximum (circles) and l2h (squares) norms) based on the values obtained
for N = 16, N = 32, N = 64 and N = 128. The convergence rate in the lower part is close to 4.

where the operator LA,B,h is given by (5.1). The approximate solution of (7.30) is compared to the analytical
solution u(x, t) = U(x) exp(ωt). In the following we have chosen k = 10 and ω = 1. In Fig. 8 we display the
solution of the semi-discrete equation at final time t = tf after time-stepping using the grids N = 32 and N = 64.
This solution is compared with the exact solution u(x, tf ) = U(x) exp(ωtf ). We also record the convergence rate ,
adding a coarser N = 16 grid and a finer one N = 128. Note that there is a delicate interaction between the three
finite difference operators δ4

xv, δ̃2
xv and the Hermitian derivative vx.

7.6. Sixth test case: a non linear example. A nonlinear modification of (7.8) is the evolution equation

(7.31)



∂

∂t
u = −

( ∂
∂x

)4

u+H(u(x, t)) + f(x, t), 0 < x < 1,

u(0, t) =
∂

∂x
u(0, t) = 0, u(1, t) =

∂

∂x
u(1, t) = 0,

u(x, 0) = u0(x).

The function f(x, t) is selected so that the exact solution is uε(x, t) with ε = 0.05 (see (7.10)). Here H(u) =
100 sin2 u. The initial data is u0(x) = uε(x, 0). The analogous semi-discrete equation is

(7.32)
d

dt
vj(t) = −(δ4

xv)j +H(vj(t)) + f∗(xj , t), 1 ≤ j ≤ N − 1.

The time discretization is performed with the Radau-IIA scheme. The numerical results are displayed in Table 4
and Figure 9.

7.7. Seventh test case : Kuramoto–Sivashinsky equation. Consider the Kuramoto–Sivashinsky equation
[28, 25]

(7.33)



∂

∂t
u = −

( ∂
∂x

)4

u−
( ∂
∂x

)2

u− u ∂

∂x
u+ f, 0 < x < 1, t > 0,

u(0, t) = 0,
∂

∂x
u(0, t) = 0,

u(1, t) = 0,
∂

∂x
u(1, t) = 0.

This equation has been independently derived in the context of several extended physical systems driven far
from equilibrium by intrinsic instabilities, including instabilities of dissipative trapped ion modes in plasmas,
instabilities in laminar flame fronts [28], phase dynamics in reaction-diffusion systems [25], and fluctuations in fluid
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Figure 9. Nonlinear equation (7.31) with exact and calculated solution uε(x, t) =
p(x)1/qε(x) sin(2πt), ε = 0.05, at final time tf = 0.75. The grids contains N = 32, N = 64,
N = 128 and N = 256 points. Left panel: N = 32, center panel: N = 256, right panel: conver-
gence rate in the maximum (circles) and l2h (squares) norms. The rate is 4. The time scheme is

the Radau-IIA scheme with a time step ∆t = Kh4/3 and 10 time iterations for N = 32.

films on inclines [29]. The equation generically describes the dynamics near long-wave-length primary instabilities
in the presence of appropriate (translational, parity and Galilean) symmetries. We present computations of three
numerical examples, where the exact solutions are known and the error of the approximate solutions (and their
derivatives) can be precisely measured. In the third example, there is no forcing function and the evolving solution
develops steep slopes.

(1) First numerical example. We take u(x, t) as

(7.34) u(x, t) = e−tx2(1− x)2, 0 < x < 1, t > 0,

so that Equation (7.33) is satisfied with f(x, t) taken accordingly. As in the previous test cases, we obtain
the approximate solutions vj(t) of u(xj , t) from the knowledge of the discrete data f∗j (t) = f(xj , t) on
the grid 0 = x0 < · · · < xj < xN = 1. The approximate solutions are computed at discrete time levels
tn = n∆t, using a temporal discretization that is analogous to the second-order IMEX time-scheme that
has been used in [3, 5].

(7.35)


v
n+1/2
j − vnj

∆t/2
+

1

2
(δ4
xv
n+1/2
j + δ̃2

xv
n+1/2
j ) = −1

2
(δ4
xv
n
j + δ̃2

xv
n
j )− vnj v

n
x,j + f∗,nj ,

vn+1
j − vnj

∆t
+

1

2
(δ4
xv
n+1
j + δ̃2

xv
n+1
j ) = −1

2
(δ4
xv
n
j + δ̃2

xv
n
j ) + v

n+1/2
j v

n+1/2
x,j + f

∗,n+1/2
j ,

In Table 5 we display numerical results for (7.35). We have picked ∆t = h2, where h = 1/N , and the final
time is tf = 0.25. Observe that the scheme (7.35) achieves fourth-order accuracy for u and ∂u

∂x . In Figure
10 we display the exact solution u(x, t) (solid line) at t = 0.25 and the computed solution v (circles) for
N = 32 (left) and N = 64 (center). The convergence rates are documented in the right panel. Notice the
fourth-order rates both for u and ∂

∂xu . Notice also that even with a coarse mesh N = 16 the match is
excellent.

(2) Second numerical example. We consider again the Kuramoto–Sivashinsky equation (7.33), and we take
the exact solution u(x, t) as

(7.36) u(x, t) = e−tx4(1− x)4, 0 < x < 1, t > 0,

with a suitable f(x, t). The discrete solution v is again obtained by the scheme (7.35). In Table 6 we display
numerical results. We have picked ∆t = h2, where h = 1/N , and the final time is t = 0.25. Observe in the
right panel that fourth-order accuracy is achieved for u and ∂u

∂x . In Figure 11 we display the exact solution
u(x, t) at (solid line) t = 0.25 and the computed solution v (circles)for N = 32 (left) and N = 64 (center)
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Figure 10. First KS numerical example (7.33): Exact solution (solid line) and computed solution
(circles) for N = 32 (left), N = 64 (center). The convergence rate is displayed in the right panel
for u (circles) and ∂u

∂x (squares).

at t = 0.25 . Notice that even with a coarse mesh N = 16 the match is excellent. The right panel shows
the fourth order convergence rate for u and ux.
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Figure 11. Second KS numerical example: Exact solution (solid line) and computed solution
(circles) for N = 32 (left) and N = 64 (center) The convergence rate for the KS equation is
documented in the right panel for u (circles) and ux (squares).

(3) Third numerical example. We consider again the Kuramoto–Sivashinsky equation (7.33). This time
we take the exact solution u(x, t) [31] as

(7.37) u(x, t) = c+ (15/19)
√

11/19(−9 tanh(k(x− ct− x0)) + 11 tanh3(k(x− ct− x0)), x ∈ [−30, 30],

with no forcing term (i.e. f(x, t) = 0). Here c = −0.1, k = 0.5
√

11/19 and x0 = −10. The discrete
solution v is again obtained by the scheme (7.35). In Table 7 we display numerical results for (7.35). for
the fourth-order scheme. We have picked ∆t = h2, where h = 1/N , and the final time is t = 1. Observe
in the right panel that fourth-order accuracy is achieved for u and ∂u

∂x . In Figure 12 we display the exact
solution u(x, t) at (solid line) t = 1 and the computed solution v (circles) for N = 121 (left) and N = 961
(center) at t = 1 . Notice that even with a coarse mesh N = 121 the match is very good. The right panel
shows the fourth order convergence rate for u and ux.
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Figure 12. Third KS numerical example: Exact solution (solid line) and computed solution
(circles) for N = 121 (left) and N = 961 (center) The convergence rate for the KS equation is
documented in the right panel for u (circles) and ∂u

∂x (squares).

Appendix A. Taylor expansions

In this appendix we collect Taylor expansions of the finite difference operators introduced in the text. For u(x)
a regular function, we call u∗ the restriction of u(x) to the grid. For the Hermitian derivative (u∗)x,j we have 2

(A.1) (u∗x)j = (∂xu)∗j −
h4

180
(∂5
xu)∗j +O(h6),

and for the operator δx(u∗)x:

(A.2) δx(u∗x)j = (∂2
xu)∗j +

h2

6
(∂4
xu)∗j +

h4

360
(∂6
xu)∗j −

h6

15120
(∂8
xu)∗j +O(h8).

On the other hand the centered operator δ2
xu
∗
j has the expansion

(A.3) δ2
xu
∗
j = (∂2

xu)∗j +
h2

12
(∂4
xu)∗j +

h4

360
(∂6
xu)∗j +

h6

20160
(∂8
xu)∗j +O(h8).

Since the coefficient in factor of h4 is 1/360 in (A.2) and (A.3) there is a cancellation when evaluating the DBO
operator δ4

xu
∗
j = 12(δxu

∗
x,j − δ2

xu
∗
j )/h

2. This gives

(A.4) δ4
xu
∗
j = (∂4

xu)∗j −
h4

720
(∂8
xu)∗j +O(h6).

Finally the fourth order accuracy of the modified operator δ̃2
x in (3.10) is seen in the expansion

(A.5) δ̃2
xu
∗
j = (∂2

xu)∗j +
h4

360
(∂6
xu)∗j +O(h8).

The small constants in the truncation errors observed in (A.1), (A.4) and (A.5) partly explain the accuracy observed
in the numerical results.
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Appendix B. Tables

mesh N = 10 Rate N = 20 Rate N = 40 Rate N = 80
|e|∞ 6.65(-5) 4.07 3.95(-6) 4.02 2.43(-7) 4.00 1.52(-8)
|e|∞,DG [32] 6.10(-5) 4.69 2.35(-6) 4.06 1.40(-7) 4.00 8.75(-9)

Table 1. Biharmonic periodic problem (7.6) with exact solution u(x, t) = sin(x) exp(−t) on x ∈ [0, 2π)
at final time is tf = ln(2). The first line indicates the errors obtained by the scheme (7.7). The second
line indicates the errors obtained by a piecewise cubic discontinuous Galerkin method [32] (without post-

processing). The time scheme Radau-IIA is used for (7.7). The time step is ∆t = Kh4/3 with 5 iterations
for N = 10. There are 80 iterations for the grid N = 80. Note that the DG scheme has 4 times more
unknowns ( 4 unknowns per cell) that the compact scheme (one unknown per point).

mesh N = 8 Rate N = 16 Rate N = 32 Rate N = 64
|e|∞ 2.46(+0) 4.02 1.64(-1) 4.13 1.01(-2) 3.99 5.83(-4)

Table 2. Equation(7.8) with a = 1, b = −1 discretized by (7.9). The exact solution is u(x, t) =
x4(1 − x)4et. The initial time t0 = 0 and the final time is tf = 10. The time scheme is the

Radau-IIA scheme. The time step is ∆t = Ch4/3 (8 time iterations for the coarsest grid N = 8).
There is 125 iterations on the finest grid N = 64.

mesh N = 32 Rate N = 64 Rate N = 128 Rate N = 256
|e|∞ 1.23(-1) 6.70 1.18(-3) 4.28 6.10(-7) 4.07 3.65(-8)

Table 3. Equation (7.8) with a = 1, b = −1 with exact solution: u(x, t) = p(x) sin(1/qε(x)) sin(2πt),
ε = 0.05. The initial time is t0 = 0 and the final time is tf = 0.75. The time scheme is the Radau-IIA

scheme. The time step is ∆t = Kh4/3 with 10 iterations for N = 32. There is 160 iterations on the finest
grid N = 256.

mesh N = 32 Rate N = 64 Rate N = 128 Rate N = 256
|e|∞ 1.23(-1) 6.73 1.20(-3) 4.33 7.50(-5) 4.08 7.63(-6)

Table 4. Equation (7.31) with exact solution: uε(x, t) = p(x) sin(1/qε(x)) sin(2πt), with the particular
value ε = 0.05. Initial time t0 = 0, Final time tf = 0.75. The time scheme is the Radau-IIA scheme. The

time step is ∆t = Ch4/3 (10 time iterations for N = 32).

Mesh N = 16 Rate N = 32 Rate N = 64
|e|h 5.9269(-8) 4.00 3.7045(-9) 4.00 2.3129(-10)
|ex|h 2.0558(-7) 4.00 1.2840(-8) 4.00 8.0158(-10)

Table 5. Compact scheme for KS equation (7.33) with exact solution u = e−tx2(x−1)2 on [0, 1].
We display |e|h and |ex|h the errors in u, and ux, respectively at t=0.25. The time step is ∆t = h2.
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Mesh N = 16 Rate N = 32 Rate N = 64
|e|h 4.6595(-4) 3.97 2.9750(-5) 3.99 1.8702(-6)
|ex|h 2.2606(-3) 4.65 8.9829(-5) 4.24 4.7682(-6)

Table 6. Compact scheme for KS equation (7.33) with exact solution u = e−tx4(x−1)4 on [0, 1].
We display |e|h and |ex|h, the errors in u, and ux, respectively at t = 0.25. The time step is
∆t = h2.

Mesh N = 241 Rate N = 481 Rate N = 961
|e|h 3.2873(-4) 3.99 2.0752(-5) 4.00 1.2984(-6)
|ex|h 2.9822(-4) 3.95 1.9332(-5) 3.98 1.2246(-6)

Table 7. Compact scheme for KS equation (7.33) with exact solution u = u(x, t) = c +

(15/19)
√

(11/19)(−9 tanh(k(x − ct − x0)) + 11 tanh3(k(x − ct − x0)). We display |e|h and |ex|h,
the errors in u, and ux, respectively at t = 1. The time step is ∆t = h2.
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