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Abstract

We consider the Finite Volume Method on irregular grids for conservation laws with a particular poly-
nomial reconstruction. This reconstruction is based on a least squares approach to compute consistent
approximations of the first, second and third order derivatives. The resulting reconstruction is cubic.
It is called the Coupled Least Squares reconstruction. It is obtained by a three stages iteration. At
each iteration, only data located in a compact stencil, and not beyond, are accessed. A linear stability
analysis is given in the case of regular and irregular one-dimensional grids. Numerical results for various
problems, including shock tubes, vortex and accoustic wave propagation, support the interest of this
approach. The reconstruction algorithm is presented in detail in the one dimensional case. An outline
of the multidimensional case in also given.

This work was announced in [14].

Keywords: Finite volume method - High order method - k-exact method - Cubic reconstruction -
Numerical flux - Linear stability - Irregular grid - Coupled Least Squares.

1. Introduction

1.1. Finite volume schemes with high order reconstruction
In [13, 14], a high order reconstruction approach for finite volume approximations was introduced

for the purpose of gas dynamics simulations on general polyhedral grids. This approach, which is called
the Coupled Least Squares reconstruction, belongs to the k− exact methods [4]. The purpose of this
paper is to give a detailed account of a particular algorithm of the reconstruction. The presentation is
mainly restricted to the one dimensional context to emphasize the logic of the numerical procedure.

Consider the conservation law
∂tu+ ∂xf(u) = 0. (1.1)

We start from the discrete in space, continuous in time, integral version of (1.1):

dvα(t)

dt
= − 1

|Tα|

[
fα+1/2(t)− fα−1/2(t)

]
. (1.2)

The grid is made of cells Tα and is depicted on Fig 1.1. In (1.2) t 7→ vα(t) approximates t 7→ ūα(t)
defined by

ūα(t) =
1

|Tα|

∫
Tα
u(x, t)dx, (1.3)
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Figure 1.1: The cell Tα and the two neighboor cells Tα±1. The barycenters of the cells Tα±1 and Tα are
the points xα±1 and xα, repectively. In addition, hα−1,α = xα − xα−1 and hα,α+1 = xα+1 − xα.

where u(x, t) is the solution of (1.1). Throughout the paper, the numerical flux t 7→ fα+1/2(t) is of the
form:

fα+1/2(t) = F
(
wα[V (t)](x−α+1/2), wα+1[V (t)](x+α+1/2)

)
. (1.4)

where:

• The function (uL, uR) 7→ F (uL, uR) denotes some numerical flux function, typically the HLLC
flux in the case of the Euler equations [29].

• The reconstruction x 7→ wα[V (t)](x) is an interpolant based on the vector V (t) = [v1(t), v2(t), . . . , vN (t)]T .

The reconstruction expounded in this paper has the form of a Taylor expansion of u(x) around the
barycenter xα of the cell Tα, i.e. (we take out the time dependency for clarity):

wα[ū](x) ' u(xα) + u′(xα)(x− xα) +
1

2
u′′(xα)(x− xα)2 +

1

6
u′′′(xα)(x− xα)3. (1.5)

where ū = [ūα] is the vector of averages of u(x) over the cells Tα. The relation (1.5) is a 3− exact
reconstruction. The main task is to define a consistent approximation to u′(xα), u′′(xα) and u′′′(xα),
where u(x) is supposed to be known by ū only.

The main observation is the following: to preserve fourth order accuracy in (1.5), it is sufficient
to calculate approximations of u′(xα), u′′(xα) and u′′′(xα) with order 3, 2 and 1, respectively. It is
the purpose of this paper to show how this can be obtained in several steps of an iterative procedure
along which the accuracy is progessively enhanced. Moreover, at each step, there is an access only to
data located in a small neighborhood of any given cell, and therefore it is called a compact k-exact
reconstruction.

This paper is the companion paper of [14] where the multidimensional aspect on general polyhedral
grids of our algorithm is addressed. This study has been initiated in [12], in the context of the package
CEDRE, a parallel multisolver CFD code for aerothermochemistry 1.

Our point of view is thus the one of a generic computational procedure for any finite volume code and
for general compressible flows. For an overview on the k− exact approach for high order computations
in CFD, compared to other approaches, we refer to the review paper [30].

1.2. High order finite volume schemes
We consider the finite volume method (1.2) for a conservation law (1.1) on a general irregular grid

made of cells Tα, which support approximations vα(t) of the averages ūα(t). As explained in Section
1.1, we want to define the reconstructed polynomial wα[V (t)](x) which is used in the numerical flux
fα+1/2(t) in (1.4). This polynomial must have the following properties (we drop the t dependency).

1CEDRE is being developed at Onera, France, http://cedre.onera.fr
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First wα[V ](x) depends linearly on the data vβ in the cells Tβ belonging to a small neighborhood of Tα.
In particular, it does not use gradient data as for example in the Discontinuous Galerkin approximation,
but only finite volume data. Furthermore, no flow based local parameters are used in a nonlinear way
to define wα[V ](x). Consequently, our reconstruction is decoupled from all nonlinear treatments such as
slope limiting or monotonicity preserving procedures. Thus the reconstruction step is decoupled from
the limitation procedure. The reconstruction step can be applied in principle to any finite volume code
including complex fluid modelling such as turbulent, multiphasic, reactive, spherical flows, etc. With
this approach, the nonlinear treatments are performed in a second step, after the reconstruction step.
Having in view general CFD codes, the design of the reconstruction must of course be multidimensional.
Moreover, it must allow an easy parallel implementation. This is obtained by mean of the procedure in
several stages presented in Section 2 and Section 3.

1.3. Related works
Reconstruction beyond linear in the finite volume method on irregular grids has been a longstanding

issue of great importance, both practical and theoretical in CFD. It takes place in the challenge to
go beyond second order with the finite volume method. The problem was introduced in [17, 1] where
various polynomial interpolations on triangles were studied. Quadratic reconstruction is undertaken in
[4, 7]. The series of studies [22, 21] explores the finite volume method with quadratic reconstruction for
compressible Fluid Dynamics. In many works, the reconstruction is analyzed in conjunction with the
limiter and with the positivity preserving property [3, 2], which are considered as constraints on the
reconstruction. This is for example the case in the well known ENO/WENO procedure. In this approach,
local high order reconstruction functions are based on stencils which vary according to local sensors
related the solution, e.g. the total variation. We refer to [16, 18, 27, 28]. Another option [9] is where the
reconstruction in finite volumes is considered in the general framework of the Discontinuous Galerkin
approach. We also refer to the studies [19, 31], with interest into application oriented simulations, where
reconstructions beyond linear are presented. Finally we mention the recent study [23] where a variant of
compact k-exact reconstruction is considered. In this study the authors use an upwinded scheme only
up to third order and switch to a fourth order centered scheme in vorticity dominated regions. This is
in contrast to our scheme which is fully upwinded up to fourth order independently of the flow regime.

1.4. Outline
The outline of the paper is as follows. In Section 2 we present the principle of our reconstruction

algorithm. In Section 2.1, the general d− dimensional framework is set up for the reconstructed cubic
polynomial wα[ū](x). From Section 2.2 on, we switch to the one dimensional case to present how the
reconstruction uses at each step only data in the direct neighborhood of Tα. In Section 3 and Section
4 the detail of the algorithm to calculate the cubic reconstruction is summarized (algorithm 1). This is
based on fully centered approximate derivatives σ̃α, θ̃α and ψ̃α in the cubic reconstruction (1.5) giving
rise to a linearly stable semidiscrete system (1.2), even on irregular grids. Our analysis is based on the
numerical computation of discrete spectra. Finally we show in Section 5 numerical results in one and
multidimension illustrating our approach.

2. Coupled Least Squares Reconstruction

2.1. The d− dimensional case
The Coupled Least Squares method is a particular method to implement a k− exact reconstruction.

This method has been already been introduced in [14]. Here we specifically focus on the piecewise cubic
reconstruction (i.e k = 3). Let Ω ⊂ Rd, d ≥ 1 be a domain with periodic boundary conditions. We
consider a grid, a priori irregular, consisting of N general polyhedral cells Tα as on Fig. 2.1.
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Figure 2.1: Two cells of a general polyhedral grid in the two dimensional case, (d = 2

Ω =

N⋃
α=1

Tα. (2.1)

The tensor notation used in this section is summarized in Appendix 8. The reconstruction algorithm
proceeds in several steps. At each step, the only data that are used are located in a small neighborhood
Wα of the cell Tα. The set Wα is a parameter of the method. A typical choice of Wα is the first
neighborhood 2 defined by

V(1)
α = {β ∈ [1 : N ], | Tβ is adjacent to Tα}. (2.2)

Let x ∈ Ω 7→ u(x) be a given regular function. The value of u and of the first, second and third order
derivatives at xα are denoted by

uα = u(xα), D(1)uα = D(1)
x u(xα), D(2)uα = D(2)

x u(xα), D(3)uα = D(3)
x u(xα). (2.3)

The derivative D(l)uα is a symmetric tensor of order l. We also note the mean value

ūα =
1

|Tα|

∫
Tα
u(x)dx. (2.4)

Consider the particular case where u(x) = p(x) is a cubic polynomial. The values p̄β − p̄α and the three
derivatives D(l)pα, l = 1, 2, 3, satisfy for all β ∈ Wα the following Taylor expansions (see Appendix 8
for the notation),

p̄β − p̄α = D(1)pα • (z
(1)
αβ − x

(1)
α ) + 1

2D
(2)pα • (z

(2)
αβ − x

(2)
α ) + 1

6D
(3)pα • (z

(3)
αβ − x

(3)
α ),

D(1)pβ = D(1)pα +D(2)pα • h(1)
αβ + 1

2D
(3)pα • h(2)

αβ ,

D(2)pβ = D(2)pα +D(3)pα • h(1)
αβ .

(2.5)

2The first neighborhood of the cell Tα is also called the direct or the Von Neumann neighborhood.
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For a general function u(x) these Talor expansions become
ūβ − ūα = D(1)uα • (z

(1)
αβ − x

(1)
α ) + 1

2D
(2)uα • (z

(2)
αβ − x

(2)
α ) + 1

6D
(3)uα • (z

(3)
αβ − x

(3)
α ) +O(h4),

D(1)uβ = D(1)uα +D(2)uα • h(1)
αβ + 1

2D
(3)uα • h(2)

αβ +O(h3),

D(2)uβ = D(2)uα +D(3)uα • h(1)
αβ +O(h2).

(2.6)
Therefore, due to the O(hp) terms in (2.6), the quantities ūβ − ūα, D(1)uα, D(2)uα and D(3)uα are ap-
proximate solutions of the system (2.5). Consider now the problem to approximate the three derivatives
D(1)uα, D(2)uα and D(3)uα by consistent values. We look for symmetric tensors called σ̃α, θ̃α and ψ̃α
satisfying 

σ̃α = D(1)uα +O(h3),

θ̃α = D(2)uα +O(h2),

ψ̃α = D(3)uα +O(h).

(2.7)

An essential observation is that for all symmetric tensors σ̃α, θ̃α and ψ̃α of order 1, 2 and 3 respectively,
satisfying (2.7), the same system than (2.6) holds. For all β ∈Wα we have:

ūβ − ūα = σ̃α • (z
(1)
αβ − x

(1)
α ) + 1

2 θ̃α • (z
(2)
αβ − x

(2)
α ) + 1

6 ψ̃α • (z
(3)
αβ − x

(3)
α ) +O(h4),

σ̃β = σ̃α + θ̃α • h(1)
αβ + 1

2 ψ̃α • h
(2)
αβ +O(h3),

θ̃β = θ̃α + ψ̃α • h
(1)
αβ +O(h2).

(2.8)

The Coupled Least Squares method consists in approximately solving (2.8), when taking out the O(hp)
terms. Otherwise stated, we solve for ū = [ū1, ū2, . . . ūN ] 7→ σ̃α[ū], θ̃α[ū], ψ̃α[ū] solution of the system

ūβ − ūα = σ̃α[ū] • (z
(1)
αβ − x

(1)
α ) + 1

2 θ̃α[ū] • (z
(2)
αβ − x

(2)
α ) + 1

6 ψ̃α[ū] • (z
(3)
αβ − x

(3)
α ), (a),

σ̃β [ū] = σ̃α[ū] + θ̃α[ū] • h(1)
αβ + 1

2 ψ̃α[ū] • h(2)
αβ , (b),

θ̃β [ū] = θ̃α[ū] + ψ̃α[ū] • h(1)
αβ , (c).

(2.9)

Solving (2.9) raises two questions. First the linear system (2.9) does not have a solution in general.
This system is rectangular with mα

(
1 +d+d(d− 1)/2

)
equations and d+d(d+ 1)/2 +d(d+ 1)(d+ 2)/6

unknowns. For example in two dimensions and for a grid made of triangles, there are 18 equations
and 9 unknowns. Therefore (2.9) is overdetermined. This leads to seek a solution in the least squares
sense. Second, equations (2.9a), (2.9b) and (2.9c) couple unknowns in differents cells. To overcome these
problems, the following strategy is used. The system (2.9) is rewritten as:

hαβ . σ̃α[ū] = ũβ − ūα − 1
2 θ̃α[ū] • (z

(2)
αβ − x

(2)
α )− 1

6 ψ̃α[ū] • (z
(3)
αβ − x

(3)
α ), (a)

hαβ . θ̃α[ū] = σ̃β [ū]− σ̃α[ū]− 1
2 ψ̃α[ū] • h(2)

αβ , (b)

hαβ . ψ̃α[ū] = θ̃β [ū]− θ̃α[ū] (c).

(2.10)

Let us now consider in each equation of (2.10) the unknowns in the right-hand-side as parameters. A
least squares resolution is applied to each equation in (2.10). Consider first (2.10)a. The right-hand
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side is denoted by

δ̃u
(0)

αβ = ũβ − ūα −
1

2
θ̃α[ū] • (z

(2)
αβ − x(2)

α )− 1

6
ψ̃α[ū] • (z

(3)
αβ − x(3)

α ), (2.11)

Therefore (2.10)a is rewritten as

hαβ . σ̃α[ū] = δ̃u
(0)

αβ , ∀β ∈Wα. (2.12)

This is a linear system of mα equations with d unknowns which are [σ̃α,1, . . . σ̃α,d]. The least squares
solution gives that σ̃α[ū] is solution of

min
σα∈Rd

∑
β∈Wα

|δ̃u
0

αβ − σα • h(1)
α |2. (2.13)

On the other hand, the standard least squares slope in cell Tα is solution of

min
σα∈Rd

∑
β∈Wα

|ūβ − ūα − σα • h(1)
α |2. (2.14)

Denote Cα and HTα the d×mα matrices (mα = #Wα)

Cα = [cαβ1
, cαβ2

, . . . cαβmα ], HTα = [hαβ1
,hαβ2

, . . .hαβmα ]. (2.15)

Assuming rank(Hα) = d, the unique solution of (2.14) is given by the least squares operator Aα defined
by

Aα : [ū] 7→ σ̄LSα [ū] =
∑
β∈Wα

cαβ(ūβ − ūα), (2.16)

where
cαβ = (HTαHα)−1h

(1)
αβ (= O(1/h)). (2.17)

As a result, σ̃α[ū] solution of (2.13) is expressed as:

σ̃α[ū] = σ̄LSα [ū]− ā(3)α . θ̃α[ū]− b̄(4)
α . ψ̃α[ū]. (2.18)

where the two tensors ā(3)α and b̄
(4)
α depend only on the grid and are given by

ā(3)α =
(
z
(2)
αβ − x(2)

α

)
⊗ cαβ , b̄(4)

α =
(
z
(3)
αβ − x(3)

α

)
⊗ cαβ . (2.19)

The relation (2.18) is the first relation of the Coupled Least Squares method. Note that at this stage,
θ̃α[ū] and ψ̃α[ū] are still parameters and are not determined. Consider now the least squares resolution
of (2.10)b. As before we consider ψ̃α[ū] in the right-hand side of (2.10)b as a fixed parameter. We denote

δ̃u
(1)

αβ = σ̃β [ū]− σ̃α[ū]− 1

2
ψ̃α[u] • h(2)

αβ , β ∈Wα. (2.20)

In (2.10)b, the symmetric tensor θ̃α[ū] is the unknown and δ̃u
(1)

αβ is at the moment considered to be known.
There are d(d+ 1)/2 unknowns and dmα equations. The linear system is as before overdetermined. It
can be expressed as

H(2)
α θ̃

α
[ū] =

[
δ̃u

(1)

αβ

]
β
, (2.21)
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where the size of the matrix H(2)
α is mαd × d(d + 1)/2. Again (2.21) is solved by least squares. This

leads to
θ̃
α

[ū] =
(
H(2)
α

)+
δ̃u

(1)

α , (2.22)

where δ̃u
(1)

α = [δ̃u
(1)

α1
, . . . , δ̃u

(1)

αmα
]T and where

(
H

(2)
α

)+
denotes the standard Moore-Penrose inverse of

the matrix H(2)
α . It is defined by [10, 8]:(

H(2)
α

)+
=
((
H(2)
α

)T
H(2)
α

)−1(
H(2)
α

)T
. (2.23)

Therefore the second relation in the space of symmetric tensors of order 2 (i.e. in Rd(d+1)/2) is

θ̃
α

[ū] =
(
H(2)
α

)+[(
σ̃β [ū]− σ̃α[ū]− 1

2
ψ̃α[ū] • h(2)

αβ

)
β

]
. (2.24)

Proceeding similarly for the third relation (2.10)c provides a relation of the form

ψ̃
α

[ū] =
(
H(3)
α

)+[(
θ̃β [ū]− θ̃α[ū]

)
β

]
. (2.25)

The relation (2.25) is an identity in the space of symmetric tensor of order 3 and H(3)
α again is a suitable

least squares matrix. The final linear system with unknowns σ̃α[ū], θ̃α[ū] and ψ̃α[ū] is of the form
σ̃α[ū] + ā

(3)
α . θ̃α[ū] + b̄

(4)
α . ψ̃α[ū] = σ̄LSα [ū], (a)

θ̃α[ū] + a
(3)
α . ψ̃α[ū] = θ̃

LS

α [ū], (b)

ψ̃α[ū] = ψ̃
LS

α [ū] (c).

(2.26)

In (2.26) we have denoted  θ̃
LS

α [ū] =
(
H

(2)
α

)+[
(σ̃β [ū]− σ̃α[ū])β

]
,

ψ̃
LS

α [ū] =
(
H

(3)
α

)+[
(θ̃β [ū]− θ̃α[ū])β

]
.

(2.27)

and where a
(3)
α is a third tensor depending only on the grid.

Definition 2.1. The system (2.26) is called the Coupled Least Squares system for the cubic reconstruc-
tion.

Two methods to solve (2.26) can be considered. First, the Jacobi (or Gauss Seidel) iteration can
be used. This approach is presented in [14]. Due to the triangular form of (2.26), a second method
consists in using a forward/backward substitution method. The rest of the paper is devoted to the
presentation of this second method in the particular case of the one dimensional setting. The interest
of the one dimensional case is that it permits to have a better view on the algebra of the algorithm. In
particular, it permits to make fully explicit the two steps of the method: first establishing the system
(2.26) and second solving it. Note in addition that, even in one dimension, the reconstruction procedure
on a nonequispaced grid is by no way straightforward. It clearly deserves an independent study in itself.
Having solved (2.26) in one way or another, the piecewise cubic reconstruction is given by

wα[ū](x) = ūα+σ̃α[ū]•
[
(x−xα)−x(1)

α

]
+

1

2
θ̃α[ū]•

[
(x−xα)⊗2−x(2)

α

]
+

1

6
ψ̃α[ū]•

[
(x−xα)⊗3−x(3)

α

]
. (2.28)
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Remark 2.2. A full mathematical study in the d− dimensional case, d ≥ 2 is not completed yet. An
important (and difficult) issue is to determine the geometric condition on the grid under which the

matrices
(
H

(2)
α

)+
and

(
H

(3)
α

)+
do exist. In the absence of such a condition so far, we rely on numerical

experiments.

2.2. The one-dimensional case
From now on, we consider the one dimensional case. First we give the detail of the agebra in Section

2.3 in the one dimensional case (d = 1). This permits to emphasize the logic of the reconstruction
procedure. In this case, the calculations presented in Section 2.1 are much simpler since all tensors
reduce to scalars. The neighborhood Wα is Wα = V(1)

α with 3

V(1)
α = {Tα−1, Tα, Tα+1}. (2.29)

The vector hαβ is defined by (see Fig. 1.1)

hαβ = xβ − xα, β = α− 1, α, α+ 1. (2.30)

In particular, hαα = 0. The hypothesis (8.12) on the irregular grid becomes

ch ≤ hα ≤ Ch, ch ≤ hαβ ≤ Ch, (2.31)

where c and C are positive constants. Let u(x) be a given regular function. The values uα, σα, θα and
ψα are (see (2.3)):

uα = u(xα), σα = u′(xα), θα = u′′(xα), ψα = u′′′(xα). (2.32)

The Taylor expansion of u(x) at xα is:

u(x) = uα + σα(x− xα) +
1

2
θα(x− xα)2 +

1

6
ψα(x− xα)3 +O(h4). (2.33)

The average ūα of u(x) over Tα satisfies:

ūα = uα +
|Tα|2

24
θα +O(h4), (2.34)

Inserting ūα in (2.33) in replacement of uα leads to expanding u(x) in the form:

u(x) = ūα + σα(x− xα) + θα

(
1

2
(x− xα)2 − 1

24
|Tα|2

)
+

1

6
ψα(x− xα)3 +O(h4). (2.35)

This is why we look for an approximant wα[ū](x) of u(x) of the form:

wα[ū](x) = ūα + σ̃α(x− xα) + θ̃α

(
1

2
(x− xα)2 − 1

24
|Tα|2

)
+

1

6
ψ̃α(x− xα)3. (2.36)

where σ̃α, θ̃α and ψ̃α are suitable approximations to σα, θα and ψα, respectively. Note that (2.36) is
the one dimensional form of the multidimensional reconstruction (2.28). Defining the reconstruction
wα[ū](x) is therefore equivalent to define σ̃α, θ̃α and ψ̃α and this is the topic of the rest of the paper.
In order to define a fourth order VF scheme, the reconstruction (2.36) is finally inserted in the flux
function as indicated in (1.4).

3We could as well consider a priori the five points dependence stencil Wα = {Tα−2, Tα−1, Tα, Tα+1, Tα+2}
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2.3. Coupled Least Squares at the continuous level
In this section, we show how to calculate σ̃α, θ̃α and ψ̃α appearing in (2.36). As already mentionned,

data are located in the compact stencil Wα = V(1)
α only. Let us start by approximating the derivative

σα by a linear relation of the form

σα '
∑
β∈Wα

cαβ(ūβ − ūα). (2.37)

with coefficients cαβ to be defined. The consistency relation is∑
β∈Wα

cαβhαβ = 1. (2.38)

The relation (2.38) express the property that the slope σ0 of a linear function u(x) = u0 + σ0x is left
invariant by the slope operator (2.37). Our privilegiate choice for cαβ in (2.38) is the least squares slope
defined by

σ̄LSα =
∑
β∈Wα

cLSαβ (ūβ − ūα), (2.39)

where cLSαβ is (see (2.17)),
cLSαβ = hαβ/

∑
β∈Wα

h2αβ . (2.40)

The least squares slope is consistent since it satisfies (2.38). Henceforth we write cαβ instead of cLSαβ .
Note that

cαβ = O(1/h). (2.41)

In the sequel, we also need the least squares values σLSα , θLSα and ψLSα defined by the relations:

σLSα =
∑
β∈Wα

cαβ(uβ − uα), (a)

θLSα =
∑
β∈Wα

cαβ(σβ − σα), (b)

ψLSα =
∑
β∈Wα

cαβ(θβ − θα). (c)

(2.42)

Lemma 2.3. The approximate derivatives σLSα , θLSα , ψLSα in (2.42) satisfy the consistency relations
σα + aαθα + bαψα = σLSα +O(h3), (a)

θα + aαψα = θLSα +O(h2), (b)

ψα = ψLSα +O(h), (c)

(2.43)

with 
σα = u′(xα),

θα = u′′(xα),

ψα = u′′′(xα).

(2.44)

Using the l-momentum H
(l)
α in Tα defined by:

H(l)
α =

∑
β∈Wα

hlαβ , (2.45)
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the coefficients aα, bα in (2.43) are:

aα =
1

2

H
(3)
α

H
(2)
α

, bα =
1

6

H
(4)
α

H
(2)
α

. (2.46)

Furthermore, replacing in (2.43)a the pointwise least squares value σLSα by σ̄LSα , gives

σα + āαθα + b̄αψα = σ̄LSα +O(h3), (2.47)

where the modified coefficients āα and b̄α are

āα = aα +
1

24

∑
β∈Wα

cαβ

(
|Tβ |2 − |Tα|2

)
and b̄α = bα +

1

24

∑
β∈Wα

cαβ |Tβ |2hαβ . (2.48)

Proof. For all cells Tβ ∈Wα, the Taylor expansion of u(xβ)− u(xα) is

uβ − uα = σαhαβ +
1

2
θαh

2
αβ +

1

6
ψαh

3
αβ +O(h4). (2.49)

Therefore the slope σLSα in (2.42)a satisfies

σLSα =
∑
β∈Wα

cαβ

(
σαhαβ +

1

2
θαh

2
αβ +

1

6
ψαh

3
αβ

)
+O(h3). (2.50)

Using (2.40) and (2.38), the identity (2.50) becomes (2.43)a where aα and bα are defined in (2.46). The
relations (2.43)bc are obtained in the same way. We now prove (2.47). We deduce from (2.34), (2.42)
and (2.49) that (note that |Tα|2 = O(h2)),

σLSα =
∑
β∈Wα

cαβ(ūβ − ūα)− 1

24

∑
β∈Wα

cαβ(|Tβ |2θβ − |Tα|θ2α) +O(h4)

= σ̄LSα − 1

24

∑
β∈Wα

cαβ

(
|Tβ |2(θα + hαβψα)− |Tα|2θα

)
+O(h4)

= σ̄LSα − θα
24

( ∑
β∈Wα

cαβ

(
|Tβ |2 − |Tα|2

))

− ψα
24

( ∑
β∈Wα

cαβ |Tβ |2hαβ

)
+O(h4).

Replacing in the preceding relation σLSα by (see (2.43)a)

σLSα = σα + aαθα + bαψα +O(h3), (2.51)

we deduce that

σα + θα

(
aα +

1

24

∑
β∈Wα

cαβ

(
|Tβ |2 − |Tα|2

))
+ ψα

(
bα +

1

24

∑
β∈Wα

cαβ |Tβ |2hαβ

)
= σ̄LSα +O(h3).

This proves (2.47), with the coefficients āα, b̄α given in (2.48). �
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3. A Cubic Reconstruction Procedure

In this section the Coupled Least Squares resolution procedure is detailed. We show how to use
Lemma 2.3 to define our cubic reconstruction. Let us start from the relations (2.47) and (2.43)bc above
relating σα, θα, ψα, σ̄LSα , θLSα and ψLSα . These relations are, (compare (2.26)):

σα + āαθα + b̄αψα = σ̄LSα +O(h3), (a)

θα + aαψα = θLSα +O(h2), (b)

ψα = ψLSα +O(h). (c)

(3.1)

Recall that σα, θα and ψα denote the exact derivatives u′(xα), u′′(xα) and u′′′(xα), respectively. How-
ever, consider for a moment the system (3.1) as a 3×3 linear system with σα, θα and ψα as "unknowns".
A forward-backward “resolution” provides Taylor expansions of σα, θα and ψα in terms of the value σ̄LSβ .
This is expressed in the following

Proposition 3.1. The exact derivatives u′(xα) = σα, u′′(xα) = θα, u′′′(xα) = ψα satisfy the relations
ψα =

∑
β∈Wα

c∗αβ

( ∑
γ∈Vβ

c̃βγ
(
σ̄LSγ − σ̄LSβ

)
−
∑
δ∈Wα

c̃αδ(σ̄
LS
δ − σ̄LSα )

)
+O(h), (a)

θα = −ãαψα +
∑
β∈Vα

c̃αβ
(
σ̄LSβ − σ̄LSα

)
+O(h2), (b)

σα = −āαθα − b̄αψα + σ̄LSα +O(h3), (c)

(3.2)

where

• The coefficients āα and b̄α are given in (2.48),

• The coefficients ãα and c̃αβ are defined by:

ãα =
aα +

∑
β∈Wα

cαβ(b̄β − b̄α + āβhαβ)

1 +
∑
β∈Wα

cαβ(āβ − āα)
, (3.3)

and
c̃αβ =

cαβ
1 +

∑
β∈Wα

cαβ(āβ − āα)
. (3.4)

• The coefficient c∗αβ is given by

c∗αβ =
cαβ

1 +
∑

δ∈Wα

cαδ(ãδ − ãα)
. (3.5)

Proof. First note that Equation (3.2)(c) is identical to Equation (3.1)(a) and therefore there is nothing
to prove. Second, consider the proof of (3.2)(b). The relation (3.1)(b) is

θα + aαψα = θLSα +O(h2) (3.6)

Replacing in the right-hand side θLSα by its value in (2.42)(b) gives

θα + aαψα =
∑
β∈Wα

cαβ(σβ − σα) +O(h2). (3.7)
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Consider now the equation (2.47) in all cells Tβ

σβ + āβθβ + b̄βψβ = σ̄LSβ +O(h3). (3.8)

For all cells Tβ close to Tα, a Taylor expansion gives{
θβ = θα + hαβψα +O(h2), (a)
ψβ = ψα +O(h). (b)

(3.9)

Replacing in (3.8) the values of θβ and ψβ given in (3.9) yields (note that āα = O(h) and b̄α = O(h2))

σβ + āβ(θα + hαβψα) + b̄βψα = σ̄LSβ +O(h3), (3.10)

or equivalently
σβ = σ̄LSβ − āβθα − (āβhαβ + b̄β)ψα +O(h3). (3.11)

Inserting finally (3.11) in (3.8) gives

θα + aαψα =
∑
β∈Wα

cαβ

(
σ̄LSα − āβθα − (āβhαβ + b̄β)ψα − σα

)
+O(h2)

=
∑
β∈Wα

cαβ

(
σ̄LSβ − āβθα − (āβhαβ + b̄β)ψα − σ̄LSα + āαθα + b̄αψα

)
+O(h2).

Collecting the terms in θα and ψα in the left-hand-side gives(
1 +

∑
cαβ(āβ − āα)

)
θα +

(
aα +

∑
β

cαβ(b̄β − b̄α + āβhαβ)

)
ψα

=
∑
β∈Wα

cαβ

(
σ̄LSβ − σ̄LSα

)
+O(h2).

Dividing each side by the coefficient

1 +
∑
β∈Wα

cαβ(āβ − āα), (3.12)

this is rewritten as
θα + ãαψα =

∑
β∈Wα

c̃αβ

(
σ̄LSβ − σ̄LSα

)
+O(h2), (3.13)

where ãα, c̃αβ are given in (3.4). Therefore (3.2)(b) is proved and we prove (3.2)(c) in a similar way.
Using (3.13 ) at xβ and the relation ψβ = ψα +O(h) gives the following expression for θβ

θβ = −ãβψα +
∑
γ∈Wβ

c̃βγ

(
σ̄LSγ − σ̄LSβ

)
+O(h2). (3.14)
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The identity (2.42)(c) is expressed using (3.1), (3.14) and (3.9)(b) as

ψα =
∑
β∈Wα

cαβ(θβ − θα)

=
∑
β∈Wα

cαβ

(
− ãβψβ +

∑
γ∈Wβ

c̃βγ
(
σ̄LSγ − σ̄LSβ

)
− θα

)
+O(h)

=
∑
β∈Wα

cαβ

(
ãαψα − ãβψβ +

∑
γ∈Wβ

c̃βγ
(
σ̄LSγ − σ̄LSβ

)
−
∑
δ∈Wα

c̃αδ(σ̄
LS
δ − σ̄LSα )

)
+O(h)

= ψα

(
−
∑
β∈Wα

cαβ(ãβ − ãα)

)

+
∑
β∈Wα

cαβ

( ∑
γ∈Wβ

c̃βγ
(
σ̄LSγ − σLSβ

)
−
∑
δ∈Wα

c̃αδ(σ̄
LS
δ − σ̄LSα )

)
+O(h).

Collecting in the left hand side all the terms in ψα gives:(
1 +

∑
δ∈Wα

cαδ(ãδ − ãα)

)
ψα =

∑
β∈Wα

cαβ

( ∑
γ∈Wβ

c̃βγ
(
σ̄LSγ − σ̄LSβ

)
−
∑
δ∈Wα

c̃αδ(σ̄
LS
δ − σ̄LSα )

)
+O(h).

Dividing by the coefficient
(

1 +
∑
δ cαδ(ãδ − ãα)

)
yields (3.2)(a) where c∗αβ is given in (3.5) and the

proof is complete. �
Finally we define the quantities ψ̃α, θ̃α and σ̃α by droping in the relations (3.2) the O(hp) terms. This
suggests the following

Corollary 3.2. Let us define the values ψ̃α, θ̃α and σ̃α by
ψ̃α =

∑
β∈Wα

c∗αβ

( ∑
γ∈Wβ

c̃βγ
(
σ̄LSγ − σ̄LSβ

)
−
∑
δ∈Vα

c̃αδ(σ̄
LS
δ − σ̄LSα )

)
, (a)

θ̃α = −ãαψ̃α +
∑

β∈Wα

c̃αβ(σ̄LSβ − σ̄LSα ), (b)

σ̃α = −āαθ̃α − b̄αψ̃α + σ̄LSα . (c)

(3.15)

These three values are approximations to ψα, θα and σα respectively with the following accuracy:
ψ̃α = ψα +O(h), (a)

θ̃α = θα +O(h2), (b)

σ̃α = σα +O(h3). (c)

(3.16)

Proof. The consistency relations (3.16) result directly from comparing (3.15) and (3.2) and from the
fact that aα = O(h), ãα = O(h), āα = O(h) and b̄α = O(h2). �
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The outcome of the preceding analysis is the following algorithm to calculate ψ̃α, θ̃α and σ̃α. Suppose
given a function u(x) with averages in the cells Tα given by ū = [ū1, ū2, . . . , ūN ]. The relations (3.15)
translate in the following computational procedure:

Algorithm 1. 1. Using (2.39), compute σ̄LSα in terms of the averages ūα for all α.
2. Compute

∑
β∈Wα

c̃αβ(σ̄LSβ − σ̄LSα ) with c̃αβ given in (3.4), for all α.

3. Using (3.15)(a), compute the approximate third order derivative ψ̃α for all α.
4. Using (3.15)(b), compute the second order derivative θ̃α for all α.
5. Using (3.15)(c), compute the first order derivative σ̃α for all α.

Our cubic reconstruction has finally the following form:

Proposition 3.3. Let ū = [ū1, ū2, . . . , ūN ] be the vector of the averages of a given function u(x) over
the cells Tα of the grid. Then the cubic reconstruction polynomial defined by (2.36) is a fourth order
accurate reconstruction of u(x) near Tα.

Proof. This is a simple consequence of (2.35). �

Remark 3.4. The difficulty mentioned in Remark 2.2 does not exist here, since the system (2.43)
(droping the O(hp) terms) consists of 3 equations with 3 unknowns σ̃α, θ̃α and ψ̃α. Note however that
the logic of the method is the same in the one-dimensional and the multidimensional cases.

Remark 3.5. The approximations σ̃α, θ̃α and ψ̃α depend by construction on data located in cells Tβ
with β ∈ {α− 3, α− 2, α− 1, α, α+ 1, α+ 2, α+ 3}. This dependence stencil of the reconstruction is not
the accessed stencil at each step of Algorithm 1, which is the compact stencil Wα = {Tα−1, Tα, Tα+1}.

Remark 3.6. The preceding analysis does not apply at boundary cells since the neighborood set Vα
for such cells is not complete. The question of defining a fourth order reconstruction at boundary cells
is difficult. It may require one-sided approximations. We do not elaborate further on this point in this
paper. In practice, second-order reconstruction is used in boundary cells.

4. A Fourth Order Finite Volume method

4.1. Semi-discrete in space approximation
Let us come back to the conservation law (1.1)

∂tu+ ∂xf(u) = 0. (4.1)

The semi-discrete scheme in (1.2) is

dvα(t)

dt
= − 1

|Tα|

[
fα+1/2(t)− fα−1/2(t)

]
, 1 ≤ α ≤ N, (4.2)

where

• The vector V (t) = [v1(t), v2(t), · · · , vN (t)]T ∈ RN has components vα(t) defined by:

vα(t) ' ūα(t) =
1

|Tα|

∫
Tα
u(x, t)dx, 1 ≤ α ≤ N, (4.3)

and where u(x, t) is the solution of (4.1).
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• The reconstruction operator V = [v1, v2, . . . , vN ] 7→ w[V ]α(x) is given by (2.36).

• The numerical flux function is denoted by (uL, uR) 7→ F (uL, uR).

Consider the particular case of the linear convection equation

∂tu+ c∂xu = 0, c > 0, x ∈ [0, 1], (4.4)

with periodic boundary conditions. In this case, the function t 7→ ūα(t) satisfies the equation:

dūα(t)

dt
= − c

|Tα|

(
u(xα,α+1, t)− u(xα−1,α, t)

)
, (4.5)

In this case, the semi-discrete scheme (4.2) is:

dvα
dt

= − c

|Tα|

(
wα[V (t)](xα,α+1)− wα−1[V (t)](xα−1,α)

)
. (4.6)

where the polynomial wα[V ](x) in (2.36) is calculated by the Algorithm 1 in Section 3. In matrix form,
the scheme (4.6) is expressed as the linear dynamical system:

d

dt
V (t) = JV (t), J ∈MN (R), (4.7)

with V (t) = [v1(t), v2(t) · · · , vN (t)]T ∈ RN . The coefficients Jαβ of J are such that:

N∑
β=1

JαβVβ = − c

|Tα|

(
wα[V ](xα,α+1)− wα−1[V ](xα−1,α)

)
. (4.8)

Note that a proof of the fourth order accuracy in space of the scheme (4.6) is by no way easy in the
case of a general irregular grid. In the case of a regular grid, we have the following

Proposition 4.1. On a regular grid with stepsize h, the scheme (4.6) is fourth order accurate with
respect to the equation

dūα(t)

dt
= − c

h

(
u(xα,α+1, t)− u(xα−1,α, t)

)
. (4.9)

Proof. We refer to the Appendix for a proof. Further comments in the particular case of an irregular
grid are also given. �

4.2. Statistical analysis for linear stability
An important question concerning the reconstruction (2.36) is whether it provides stability of the

linear system (4.7). This is related to the location of the spectrum of the matrix J in the complex plane.
Due to the irregularity of the grid, this spectrum is not analytically known in general, and therefore
we must rely on some numerical evaluation. We refer to [15] for the same stability problem in three
dimensions and in the case of a piecewise linear reconstruction,

Consider a periodic grid with cells of length |Tα| = καh. The coefficient κα stands for a measure of
the irregularity of the grid. The κα satisfy

∑
α κα = 1. The spectral abscissa of J is defined by:

Λ = max
1≤k≤N

Re(λk). (4.10)
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Figure 4.1: Left panel: spectral abscissa Λ (4.10) for the scheme (4.6) for a sample of 5000 random
irregular grids of size 64. The scale along y is 10−13. Right panel: distribution of the spectral absissa
Λ for a sample of 5000 random grids of size 64: a Gaussian distribution around the value 0 is clearly
observed. This indicates a stable scheme.

The dynamical system (4.7) is stable when Λ ≤ 0. We adopt here an elementary statistical point of
view. The spectral absissa Λ is evaluated using a sample of irregular grids. Each grid of the sample has
N cells. The irregularity factor κα, 1 ≤ α ≤ N , is randomly selected so that

κα ∼ 1 + Crα > 0, (4.11)

where C ∈ [0, 1) is a constant and r = [rα] ∈ [−1, 1]N is a random array of size N . The magnitude of
the constant C determines the irregularity of the grid. Testing a large sample of such grids provides a
statistical evaluation of the value of the spectral abscissa Λ. Doing so, no instability was observed, to
computer accuracy. On Fig. 4.1 (left panel), we display the spectral abscissa as a function of the index
k of 5000 randomly selected grids of size N = 64. This was also performed (not shown) using a sample
of 1000 grids of size N = 32. In both cases, the irregularity constant in (4.11) was choosen as C = 0.99,
which corresponds to highly irregular grids. As can be observed, Λ ' 0 to computer accuracy. On
Fig. 4.1 (right panel) the distribution of Λ is represented, which appears to be Gaussian. Furthermore
a T-test at the confidence level α = 0.05 with null hypothesis on the mean value Λ̄ = 0 (vs Λ̄ 6= 0)
provides a non-rejection and a confidence interval of [Λmin,Λmax] = [−0.0085(−14), 0.14(−14)] (for Λ̄).
This clearly indicates that the eigenvalues of the matrix J are located in the left complex half-plane and
therefore we can infer that that the linear dynamical system (4.6) is stable.
Note that due to the irregularity of the grid, a theoretical localization of Λ seems a difficult problem of
spectral analysis.

4.3. Dissipation and dispersion analysis
In the particular case of a regular grid with step-size h, the approximation (4.6) can be analytically

derived. The coefficients H(2)
α , H

(3)
α and H(4)

α in (2.45) are

H(2)
α = 2h2, H(3)

α = 0, H(4)
α = 2h4.

The coefficients aα, ãα, āα, bα, b̄α in (2.46) are

aα = ãα = āα = 0, bα =
h2

6
, b̄α =

5

24
h2.
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The coefficients cα,α+1, cα,α−1, c∗α,α+1, c∗α,α−1 in (2.42) and (3.5) are

cα,α+1 =
1

2h
, cα,α−1 = − 1

2h
, c∗α,α+1 =

1

2h
, c∗α,α−1 = − 1

2h
.

The least squares slope is
σ̄LSα =

ūα+1 − ūα−1
2h

. (4.12)

The values of ψ̃α, θ̃α, ψ̃α in (3.15) are
ψ̃α = 1

(2h)2

(
σ̄LSα+2 + σ̄LSα−2 − 2σ̄LSα

)
,

θ̃α = 1
2h

(
σ̄LSα+1 − σ̄LSα−1

)
,

σ̃α = 53
48 σ̄

LS
α − 5

96 σ̄
LS
α+2 − 5

96 σ̄
LS
α−2.

(4.13)

In (4.6), wα[V ](xα,α+1) is given by:

wα[V ](xα,α+1) = wα[V ](xα + h/2) (4.14)

= ūα +
1

2
hσ̃α +

1

12
h2θ̃α +

1

48
h3ψ̃α.

The scheme (4.6) is therefore

dvα
dt

= − c
h

[(
vα(t) +

h

2
σ̃α(t) +

h2

12
θ̃α(t) +

h3

48
ψ̃α(t)

)
(4.15)

−
(
vα−1(t) +

h

2
σ̃α−1(t) +

h2

12
θ̃α−1(t) +

h3

48
ψ̃α−1(t)

)]
.

We now give a dissipation and dispersion analysis of (4.15). Such an analysis is an important
indication to interpret the numerical behaviour of the scheme. For each given wavenumber k, −N/1+1 ≤
k ≤ N/2, we consider the periodic initial function uk0(x):

uk0(x) = exp(2ikπx). (4.16)

The discrete initial data at xα = αh is

uk0,α = exp(iαφk) where φk = 2πkh ∈ (−π, π]. (4.17)

The solution of the system (4.7) is:

ukα(t) = exp(2ikπ(xα − ĉkt)), (4.18)

where the numerical velocity ĉk, which depends on k, is decomposed into real and imaginary parts as

ĉk = ĉk,R + iĉk,I . (4.19)

Definition 4.2. The dissipation and the dispersion functions are defined by φk ∈ [0, π[7→ D1(φk) =
ĉk,I
c , (a)

φk ∈ [0, π[7→ D2(φk) =
ĉk,R
c (b).

(4.20)
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• The dissipation functionD1(φk) is positive when the sinusoidal gridfunction function zkα = exp(iαφk)
is amplified for the wave number k. This corresponds to an unstable scheme. In the contrary, if
D1(φk) ≤ 0 for all k, then the scheme is stable.

• The dispersive function D2(φk) ≥ 1 for a propagation at a velocity ĉk,R > c and D2(θ) ≤ 1 for a
propagation at a velocity ĉk,R < c. In both cases, there is a dispersive behaviour of the scheme.

We proceed by expanding the normalized eigenvalue sk = cλk/h in powers of h when h→ 0. This yields
(the value iξ corresponds to the operator ∂x):

sk = −c

(
iξ +

17

384
iξ5h4 +

229

3840
ξ6h5

)
+O(h6). (4.21)

Otherwise stated, the modified equation [26] of the scheme (4.15) is

∂tu+ c∂xu = −c

(
17

384
h4∂(5)x u(x, t)− 229

3840
h5∂(6)x u(x, t)

)
+O(h6). (4.22)

The relation (4.22) indicates fourth order accuracy with a leading dispersive error of order 4. Further-
more the first dissipative term is of order 5 with a real part of λk behaving as:

Re(λk) ∼ − 229

3840
φ6k ≤ 0. (4.23)

This suggests a stable behaviour. Actually the normalized full spectrum (see bottom panel of Fig.
4.2) confirms the stability of the scheme (4.15). The dissipation curve φk ∈ [0, π) 7→ D1(φk) and the
dispersion curve φk ∈ [0, π) 7→ D2(φk) are shown on Fig. 4.2 (top panels).

Remark 4.3. Not all cubic reconstruction lead to a stable dynamical system (4.9). Consider for example
the consistent approximations σ̃α, θ̃α and ψ̃α to u′(xα), u′′(xα) and u′′′(xα), defined by:

ũα + h2

24 θ̃α = ūα,

1
6 σ̃α−1 + 2

3 σ̃α + 1
6 σ̃α+1 = δxũα,

1
12 θ̃α−1 + 10

12 θ̃α + 1
12 θ̃α+1 = 2δ2xũα − δxσ̃α,

1
12 ψ̃α−1 + 10

12 ψ̃α + 1
12 ψ̃α+1 = δ2xσ̃α.

(4.24)

An algebraic calculation, not shown here, demonstrates that the spectrum is located on the right of the
imaginary axis and therefore that the scheme (4.7) with the reconstruction wα[ū] in (2.36) with σ̃α, θ̃α
and ψ̃α given in (4.24) is instable.

5. One dimensional numerical results

In this section, we display numerical results obtained with the scheme (4.2). First we give some
results on the linear convection equation. In this case, (4.2) becomes (4.7). Then we show results for
nonlinear gasdynamics test cases.
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Figure 4.2: Top left panel: dissipation of the scheme (4.15). Top right panel: dispersion of the scheme
(4.15). Bottom panel: spectrum of the matrix J in (4.7). The spectrum is located in the left half-plane.
This indicates stability. The order of accuracy is reflected by the tangency order at the origin along the
vertical axis.
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In all the results the RK4 time stepping scheme is used. If V n ' V (tn) is supposed given, then V n+1

is computed by (in the case of (4.7)):

k0 = JV n,
k1 = J(V n + 1

2∆t k0),
k2 = J(V n + 1

2∆t k1),
k3 = J(V n + ∆t k2),

V n+1 = V n + ∆t

(
1
6k0 + 1

3k1 + 1
3k2 + 1

6k3

)
.

(5.1)

The scheme (5.1) is separately fourth order in space and time, and therefore it is globally fourth order
(assuming a CFL condition for the time step.).

5.1. Accuracy and convergence analysis for the linear advection equation
In this section, we present an accuracy and convergence analysis for the linear convection equation

∂tu+ c∂xu = 0, c > 0, x ∈ [0, 1], (5.2)

approximated by the scheme (4.7)-(5.1). Fourth order accuracy is expected. The grid refinement
procedure is as follows. We start from a mildly irregular grid of Ω = [0, 1], with N cells Tα, |Tα| = καh,∑
α κα = 1 defined by the law

κα = K

(
1 +

1

2
cos2(8xαπ)

)
. (5.3)

The constant K is adjusted so that
N∑
α=1

κα = 1. (5.4)

After performing a first computation using this first grid, the grid is refined by randomly splitting each
cell into two subcells with shapes corresponding to the two values

κ2α−1 =
K

2
κα(1− Crα), κ2α =

K

2
κα(1 + Crα), (5.5)

where C is a constant monitoring the randomness of the refinement. The grid is refined five times
according to (5.5). The result is a highly irregular grid. Fig. 5.1 reports the convergence of the scheme
in maximum norm after 1, 5 and 10 periods of propagation and using two different choices of the constant
C. We observe very satisfactory error levels and convergence rates matching the expectation of fourth
order accuracy. Note that there is little difference between the two refinement patterns.

5.2. Shock tube problems
In this section we display several results obtained for shock tube problems of gas dynamics. The one

dimensional Euler system has the form (1.1)

∂tq + ∂xf = 0, (5.6)

with 
q = [ρ, ρu, ρ(E +

1

2
u2)]T ,

f =

[
ρu, ρu2 + p,

(
ρ(E +

1

2
u2) + p

)
u

]T
.

(5.7)
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(a) Regular refinement with C = 0 in (5.5) (b) Random refinement with C = 0.5 in (5.5)

Figure 5.1: Fourth order finite volume scheme for the linear convection equation on a set of consistently
refined irregular grids. The shape aspect of the cells is given by (5.3). Left panel: each cell is refined in
two subcells. Right panel: random effect in the grid refinement, given in (5.5). In both case, an almost
fourth order is observed after 1, 5 and 10 periods.

The physical variables are q̂ = [p, T, u]T . The thermodynamic data are given in dimensional form: r = 285.7143J. kg−1 .K−1 constant of perfect gas
cv = 714.2857J. kg−1 .K−1

p = rρT and E = cvT are the pressure and internal energy
(5.8)

The semi discrete fourth order finite volume scheme for t 7→ V (t) = [v1(t), v2(t), . . . , vN (t)]T is

dvα(t)

dt
= − 1

|Tα|

[
fα+1/2(t)− fα−1/2(t)

]
. (5.9)

where vα(t) ' qα(t), the average of q(x, t) over Tα. The numerical flux function is chosen as the HLLC
numerical flux [29]. But other numerical flux can be selected without significant influence on the result.
The cubic reconstruction is performed on the physical variables using:

w[V ]α(x) = vα + σ̃α(x− xα) + θ̃α

(
1

2
(x− xα)2 − 1

24
|Tα|2

)
+

1

6
ψ̃α(x− xα)3. (5.10)

where the vector values σ̃α, θ̃α and ψ̃α, are obtained by the Algorithm 1 in Sec. 3. Again, the time-
stepping scheme is the RK4 scheme. We show the results obtained for two shock tube problems obtained
with order the order two and four versions of the scheme, respectively. In both cases, we use the simple
limiter (5.11) acting on the the physical variables. It is designed as follows. In each cell Tα, the
reconstructed poynomial wα[V ](x, t0) is limited so that

wα[V ](xα±1/2) ∈ [ min
β∈Vα

vβ , max
β∈Vα

vβ ]. (5.11)

This is obtained by applying the same scalar coefficient λα to the three values σ̃α, θ̃α and ψ̃α in (2.36).
In other words, the polynomial wα[V ](x) in (5.10) is replaced by

w̃α(x) = ūα + λα

(
wα[V ](x)− ūα

)
(5.12)

with λα > 0 such that (5.11) holds in the cell Tα. This limitation is part of the semi-discrete approxima-
tion. Therefore it is applied at each substep of the time scheme (5.1). Since this paper is focused on the
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reconstruction in Algorithm 1, we do not elaborate further on the limiter design and we limit ourselves
to the limiter (5.11). Note that this limiter does not a priori prevent new extrema to appear. It is used
for the sole purpose to limit nonlinear oscillations. Note also that in such shock tube problems, the
physical time of simulation is too short to observe significant differences between the second order and
the fourth order schemes. Future work will be devoted to a sharper comparison with a larger physical
time of observation. Here a regular grid is used and our purpose is only to show that the fourth order
scheme (4.2) is sufficiently robust to handle these gas dynamics test cases. The CFL = 0.3 is selected
in order for the time approximation to not significantly modify the accuracy in space.

5.2.1. Sod test case
In all our tests, the dimensions of the tube are:{

x0 = 0.5 m location of the initial discontinuity,
xl = 5.0 m lenght of the half of the tube. (5.13)

For the Sod test, we use the initial left and right states in the unit system of (5.8): ρl = 3.5 kg .m−3

ul = 0.0 m . s−1

pl = 106 Pa

 ρr = 0.4375 kg .m−3

ur = 0.0 m . s−1

pr = 105 Pa
(5.14)

This corresponds to left and right temperature values of Tl = 1000K and Tr = 800K, respectively.
The observation time is t = 0.003s. The results are plotted against the exact solution. The contact
discontinuity is slightly better with the scheme of order 4 (right column of Fig. 5.2) than with the one
of order 2 (left column of Fig. 5.2). As already mentioned, due to the short observation time, there is
no significant difference between the second order and the fourth order versions of the scheme. Observe
that the limiter (5.11) (applied to the physical quantities q̂ = [p, T, u]T ) is sufficient to ensure a good
behaviour of the scheme near discontinuities.

5.2.2. Lax test case
The Lax test case initial conditions are given using the physical system of units (5.8): ρl = 1.038569 kg .m−3

ul = 191.511 m . s−1

pl = 6.17800 105 Pa

 ρr = 1.16667 kg .m−3

ur = 0.0 m . s−1

pr = 105 Pa
(5.15)

This corresponds to left and right temperature values of Tl = 2082K and Tr = 300K, respectively.
The observation time is t = 0.00575s. Again there is no significant difference between the versions of
order 2 (Fig. 5.3) and 4 (right column of Fig. 5.3). We only observe a better resolution of the contact
discontinuity with the fourth order scheme. In this case, the limiter (5.11) is not sufficient to limit
the overshoot near the contact discontinuity. We oberve this behaviour in the case of a temperature
transition of the form Tbefore < Tafter. Note that no overshoot was observed in the opposite case
(Tafter < Tbefore). Observe nonetheless that the fourth order scheme is stable.
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Figure 5.2: Sod shock tube . Finite volume scheme with a regular grid of 200 cells. Left column: standard
second order reconstruction. Right column: finite volume scheme with fourth order reconstruction
(5.10). In both cases, the slope limiter is (5.11) and CFL = 0.3. The exact solution is represented with
the continuous line.
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Figure 5.3: Lax shock tube . Finite volume scheme with a regular grid of 200 cells. Left column: standard
second order reconstruction. Right column: finite volume scheme with fourth order reconstruction
(5.10). In both cases, the slope limiter is (5.11). The CFL is CFL = 0.3. The exact solution is
represented with the continuous line.
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Figure 6.1: Convection of the isothermal vortex (6.1) - Left panel: initial condition. Right panel: irregular grid.

6. Multidimensional numerical results

The two test cases displayed hereafter are related to propagation problems in gas dynamics. Both
aim to illustrate the efficiency of the cubic reconstruction procedure on an irregular grid when compared
to lower order reconstructions.

6.1. Vortex transport by a uniform flow
The first test case consists of an isothermal Gaussian vortex moving accross a periodic box with

constant velocity. This vortex is an analytical solution of the two dimensional Euler equations. The
dimensional characteristics of the vortex are as follows:

gas constant: R = 8.314 J mol−1K−1,
molar mass: Mg = 28.0134103 kg mol−1,
σ = 0.001, a = 1

2

(
0.005
σ

) Mg

RT0
' 0.000140393,

constant temperature: T = T0 = 300 K,

Gaussian pressure distribution: p = p0(1− ae−
r2

2σ2 ) Pa,
p0 = 105 Pa , (gives pmin ' 99985.96 Pa),

vortex angular velocity: vθ =
√

2aRT0/Mg

1−ae−
r2

2σ2

e−
r2

2σ2 ,

advection velocity: vx = 50 ms−1, vy = 20 ms−1,
tstart = 0, tend = 0.004,
10 periods along the x direction,
4 periods along the y direction,
∆t = 5.10−8 s, CFL on finest grid ' 0.2.

(6.1)

A piecewise cubic reconstruction of the form (2.28) is used combined with the Roe numerical flux. There
is no limitation needed for this case. At final time Fig. 6.2 reports the shape of the vortex when using
the irregular grid in the right panel of Fig. 6.1. The vortex spans over approximately 15 cells. As can be
observed, after several periods of propagation, there is a drastic difference between the piecewise affine
reconstruction and the piecewise cubic reconstruction. For comparison the result using a 200 × 200
Cartesian grid is also reported. Comparing Fig. 6.2 and 6.3, it turns out that the result obtained
with the fourth order scheme on the irregular grid is more accurate than the result obtained using the
Cartesian grid with the second order scheme.
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Figure 6.2: Convection of the isothermal vortex (6.1) with the unstructured grid in Fig. 6.1 at final time - Left panel:
piecewise linear reconstruction (second order FV scheme) - Right panel: piecewise cubic reconstruction , (fourth order FV
scheme).

Figure 6.3: Convection of the isothermal vortex (6.1) with a Cartesian fine grid at final time - Left panel: piecewise
linear reconstruction (second order FV scheme) - Right panel: piecewise cubic reconstruction, (fourth order FV scheme).
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6.2. Acoustic Wave in a 3D Channel
This test case concerns a propagation problem typically occuring in aeroacoustics. Aeroacoustics

computations are usually performed by associating two kinds of codes:

• an unsteady CFD code for LES (Large Eddy Simulation) . This first code calculates acoustic
sources generated by the turbulent flow and performs the numerical propagation in the acoustic
near field region,

• an acoustic code to reconstruct the far field from unsteady CFD results recorded at CFD-acoustic
interfaces (e.g. [25]).

It is thus very important to assert the efficiency of the CFD code for accurately propagating acoustic
waves in the near field up to the CFD/acoustic interface without excessive damping or phase errors.
Complex geometries are to be considered frequently and unstructured meshes are most of the time
mandatory. In general, when 2nd order CFD schemes are used, fine meshes are required in the near field
region to compensate the limited frequency bandwidth of these schemes. In [6, 20] numerical results
are shown with a 2nd order scheme for aeroacoustics problems. It is believed that higher order accurate
schemes will demonstrate higher bandwidth thus allowing less refined meshes for a fixed precision. A
popular measure of the bandwidth of a scheme is simply expressed as the minimum number of grid
points (or cells) per wavelength (denoted by ppw). This is required to properly propagate a given wave
pattern over a significant length [5]. When using a 2nd order schemes, a ppw of the order of 20-25 is
often mentioned while with recent high order schemes, the ppw parameter is likely of the order 4-6.

6.2.1. Test case outline
Our test case consists of an acoustic wave propagating in a uniform flow. The geometry consists of

a square duct with axis Ox and uniform cross section of 0.2 × 0.2m. The length is L=10 m. The duct
is filled with a uniform flow of air at V x =1 m·s−1 at ambient conditions: 101 325 Pa and 300 K. Under
these conditions the sound velocity is c = 347 m·s−1. Boundary conditions are set to:

• left edge (x = 0): subsonic inlet conditions set at V x =1 m·s−1, T =300 K.

• right edge (x = L): subsonic outlet conditions set at P=101 325 Pa.

• lateral surfaces : slip boundary conditions.

We have used a uniform mesh of isotropic tetrahedra of size a =20 mm. At the right edge, four layers of
prisms of uniform size of 16 mm were added. This part of the grid intends to allow for a planar acoustic
wave generation as described below. Overall, the grid consists of 288876 cells and 600053 faces, (see fig.
6.4).

The simulation is initiated by a sinusoidal perturbation at the right end of the duct: a time harmonic,
isothermal (300 K), distributed mass source enters the first layer of prismatic cells on the right of the
computational domain. It is expressed as:

ṁ = A sin (2πft) . (6.2)

In (6.2 ) the amplitude A is set so as to generate a low amplitude acoustic wave (smaller than 20 Pa of
physical amplitude) such that non linear effects can be ignored. This source generates a plane acoustic
wave propagating upstream, from the right to the left with a phase velocity Vϕ = c − Vx = 346 m·s−1.
The corresponding wavelength is thus:

λ =
Vϕ
f
. (6.3)
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Figure 6.4: Test Case 1: Acoustic wave in a channel - Duct overview and grid details at the right end

The physical elapsed time of each run is 20 ms. This corresponds to a propagation length of 6.9 m
in the counter flow direction (x < 0). The inlet boundary is therefore not impacted, thus alleviating
any acoustic reflection issues at the left end boundary. A total of 7578 time steps are performed at
CFL = 0.4. By using a series of values for the source frequency f , the resolution of the acoustic wave for
a given grid, as represented by the parameter ppw (number of grid points per wavelength) is estimated
by

ppw =
λ

a
. (6.4)

Runs were performed for a series of 4 values of the frequency f, which corresponds to a ppw number
varying from 6 (coarse mesh) to 59 (extra fine mesh). Table 1 summarizes the results. When 2nd order

Run R1 R2 R3 R4
f (Hz) 300 700 1500 3000
λ (m) 1.1533 0.4943 0.2307 0.1153
ppw = λ/a 59 25 12 6

Table 1: Test Case 1: Acoustic wave in a channel - Values of the wave frequency

CFD schemes are used in aeroacoustic, a value of 20-25 ppw is typically used. This corresponds to a
specific grid step size, according to the expected frequency range of the acoustic sources. This value was
selected for the runs of the R2 series. Then for each run conditions, computations were performed for
schemes of various orders, as described in Table 2, and the wave quality was observed and compared at
different numerical transducers located along the duct axis.
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Figure 6.5: Test case 1: Acoustic wave in a channel - Top: illustration of wave propagation - Bottom:
pressure time histories at numerical transducers location. Numerical case R3 and scheme O4-RK4 (see
Tables 1 and 2)

6.2.2. Amplitude and phase error analysis
The analysis of the numerical results was performed using three numerical transducers located on

the duct axis at 7 m, 8 m and 9 m, respectively, see Fig. 6.5 top. For example we show on Fig. 6.5
(bottom) the pressure time history for a specific run.

The quality of the schemes was estimated from the wave amplitude damping along the propagation
direction. The phase error was measured with respect to an ideal linear acoustic wave propagation
solution of the form

P (x, ti) = Re
[
P0e

i(ωt−kr+ϕ0)
]

(6.5)

with ω = 2πf ∈ R and k = kr + iki ∈ C. The calculated time series is assumed to have the form

F (x, ti) = A0 (x) sin (2πf (x) ti + ϕ (x)) e−α(x)ti . (6.6)

where the four parameter functions A0(x), f(x), ϕ(x) and α(x) have to be estimated. Identifying these
four functions is obtained by a fitting approximation technique using exponential (in time) sums. This
kind of fitting is thoroughly presented e.g. in [32]. Here we assume that our numerical data can be
represented by the series

F (x, ti) =

N∑
n=1

ane
iσnti with (an, σn) ∈ Z2 (6.7)

The function F represents a real monochromatic wave, so that we limit the sum to two terms (N = 2 in
(6.7)). By identification the functions A0(x), f(x), ϕ(x) and α(x) are constants and they are expressed
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in terms the values a1, a2,σ1 and σ2 as

A0 =
√

4a1a2, 2πf =
σ1 − σ2

2
,

ϕ =
1

2i
log

(
−a1
a2

)
, α =

σ1 + σ2
2i

.
(6.8)

An iterative least squares procedure is then used to identify these four constants. Turning back to the
damping and dispersion evaluation, we use the now estimated functions A0(x) and ϕ(x) as a basis of
our measurement 4. The numerical wave damping for one single wavelength is estimated by

A0 (x2)

A0 (x1)
= ek

i(x2−x1) = eλk
i( x2−x1

λ ),

eλk
i

= e

(
λ

x2−x1

)
log

(
A0(x2)

A0(x1)

)
,

(6.9)

where eλk
i

represents the wave damping per wavelength traveled. Similarly, the numerical dispersion
can be represented by the phase difference between two transducer locations as

∆ϕ21 = ϕ (x2)− ϕ (x1) ,

(∆ϕ21)th = −kr (x2 − x1) ,
(6.10)

where kr = 2πf
Vϕ

. The relative error on the phase velocity error can be finally expressed as

∂Vϕ
Vϕ

=
∂ (∆ϕ21)

2π (x2 − x1)

λ

. (6.11)

6.2.3. Numerical Results
Results using reconstruction of order 2, 3 and 4 (denoted by O2, O3, and O4) are reported. This

corresponds to reconstruction polynomials of order 1, 2 and 3 respectively. The comparison analysis of
Sec 6.2.2 was carried out with the results obtained from different runs summarized in Table 2.

Run R1 R2 R3 R4
O2 - RK2 x x x x
O3 - RK3 x x x
O4 - RK4 x x x
O4 - RK4, CFL = 0.8 x

Table 2: Test Case 6.2: acoustic wave in a channel - Computation matrix

Tables 3 and 4, and Figs. 6.6 and 6.7 show that the scheme of order 4 provides a drastic improvement
in the ability of the code to propagate acoustic waves. Even on a coarse grid (up to 6 points per
wavelength) a very small damping and phase error was observed. Regarding a detailed comparison, Fig.
6.6 shows a similar damping between 2nd order and the 3rd order scheme whereas Fig. 6.7 shows that
the 3rd order and the 4th order schemes have a similar phase error. This is easily interpreted in terms
of the modified equation (see (4.22) and [26]) associated with the linear transport equation. A 2nd and
a 3rd order scheme have a first dissipative error h3∂(4)x u, whereas a 3rd and 4th order schemes have a

4Note that the two other functions f(x) and α(x) are used only to check the accuracy of the exponential fitting.
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Run (ppw) O2-RK2 O3-RK3 O4-RK4 O4-RK4(CFL = 0.8)
R1 (59) 0.9995
R2 (25) 0.9961 0.9965 0.9990
R3 (12) 0.9843 0.9866 0.9942 0.9939
R4 (6) 0.9188 0.9276 0.9754

Table 3: Test Case 6.2: acoustic wave in a channel - Summary of results for wave damping per wavelength

Run (ppw) O2-RK2 O3-RK3 O4-RK4 O4-RK4(CFL = 0.8)
R1 (59) -0.0119%
R2 (25) -0.0695% -0.0054% 0.0000%
R3 (12) -0.3046% -0.0183% -0.0256% -0.0287%
R4 (6) -1.0516% -0.0466% -0.0744%

Table 4: Test Case 6.2: acoustic wave in a channel - Summary of results for the relative phase velocity
error (6.11)

a O2-RK2 O3-RK3 O4-RK4 O4-RK4(CFL = 0.8)
Intrinsic CPU ratio 1 4.7 12.0 12.0
Run CPU ratio 1 4.7 12.0 6.0

Table 5: Test Case 6.2: acoustic wave in a channel - Relative CPU cost

first dispersive error of the form h4∂
(5)
x u. Overall the 4th order scheme detailed in Sections 3 and 4

outperforms the two other schemes.
Table 5 reports numerical values regarding computational cost. The computational complexity of the

3rd and 4th schemes was numerically measured against the 2nd order scheme. Two values are reported.
First the intrinsic CPU ratio, which is a numerical evaluation of the cost of one single time iteration.
Second the CPU ratio for the full simulation. The latter also depends on the stability properties of each
scheme. As an example, the RK4 (explicit) time stepping scheme allows a stability limit of CFL = 0.8
with the 4th order scheme instead of CFL = 0.4 with the second order scheme. The overall CPU ratio
is therefore reduced to a factor, as reported in Table 5. The change from CFL = 0.4 to CFL = 0.8 did
not bear any loss in terms of scheme accuracy, as shown in Tables 3 and 4 and in Fig. 6.6 and 6.7.

7. Conclusion

This paper describes the Coupled Least Squares reconstruction procedure to be used in finite volume
methods. This piecewide cubic reconstruction belongs to the k− exact reconstruction of [4]. We have
investigated the design and implementation of this reconstruction on irregular grids. We have obtained
a high order finite volume scheme which can be extended to complex physical models. The resulting
scheme exhibits good stability properties.

As explained in the introduction, our main interest is to keep the paradigm of one unknown per
cell, avoiding to introduce additional degrees of freedom in the cells. Furthermore, our reconstruction
procedure is fully centered. In particular no solution dependent reconstruction stencils are used. Since
the algorithm needs data located in a compact neighborhood, the reconstruction can be efficiently
implemented regarding parallellism. This is clearly of crucial importance for practical applications.
This property will be further analyzed elsewhere in physically realistic situations.

31



Figure 6.6: Test Case 6.2: acoustic wave in a channel - Wave damping per wavelength

Figure 6.7: Test Case 6.2: acoustic wave in a channel - Relative phase velocity error

8. Appendix: Tensor notation

The tensor formalism permits to handle the algebra for polynomial reconstruction in multidimension.
Refer on this topic to the recent monograph [11]. Here we review the definitions needed in Section 2.1.
We follow [12, 13]. A tensor a of order k is a linear application

(x1, . . . ,xk) ∈ (Rd)k 7→ a(k)(x1, . . . ,xk). (8.1)

The components of a(k) are
ai1...ik = a(k)(ei1 , . . . eik). (8.2)

The tensor a(k) is symmetric if for all permutation σ of k elements,

aσ(i1)...σ(ik) = ai1...ik . (8.3)

In Section 2.1 is used the fact that the derivative D(k)u(x) is a symmetric tensor of order k with
components

D(k)ui1...ik =
∂u(x)

∂xi1 . . . ∂xik
, 1 ≤ i1 . . . ik ≤ d (8.4)
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Finally for 0 ≤ m ≤ k, the product of the tensors a(k) and b(m) is the tensor of order k−m denoted by
a(k) . b(m) with components

(a(k).b(m))i1...ik−m =

d∑
j1=1

· · ·
d∑

jm=1

ai1...ik−mj1...jmbj1...jm . (8.5)

In the particular case m = k, the product of ak and bk is called the contraction and is the scalar denoted
by

a(k) • b(k) =

d∑
j1=1

· · ·
d∑

jk=1

aj1...jkbj1...jk . (8.6)

Finally the tensor product of a(k) and b(m) is the tensor c(k+m) = a(k) ⊗ b(m) with components

ci1,...ik+m = ai1...ikbik+1...ik+m . (8.7)

In particular, for x ∈ Rd a given vector, the tensor x⊗k is defined by

x⊗ki1...ik = xi1 . . . xik . (8.8)

In our context, specific tensor notation is as follows. Cell indices are α and β ∈ Vα.

xα = (xα,1, . . . , xα,d)
T ∈ Rd barycenter of Tα,

hαβ = xβ − xα, with norm hαβ = |hαβ |,

h
(k)
αβ = hαβ ⊗ · · · ⊗ hαβ︸ ︷︷ ︸

k×

,

z
(k)
αβ =

1

|Tβ |

∫
Tβ

(x− xα)⊗kdx,

x
(k)
α = z

(k)
αα,

|Tα| =
∫
Tα
dx = x(0)

α .

(8.9)

In particular we have
z(1)α − x(1)

α = h
(1)
αβ = hαβ . (8.10)

The components of the tensor z(k)αβ are z(k)αβ,i1i2...ik
defined for 1 ≤ i1 . . . ik ≤ d by

z
(k)
αβ,i1i2...ik

=

∫
Tβ

(xi1 − xα,i1)(xi2 − xα,i2) . . . (xik − xα,ik)dx. (8.11)

Moreover the consistency of the reconstruction is estimated using the scale h which is such that

chd ≤ |Tα| ≤ Chd, ch ≤ hαβ ≤ Ch, 1 ≤ α, β ≤ N, (8.12)

for some constants c and C.
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9. Appendix: Spatial accuracy analysis

Here we give some comments on the accuracy analysis of the approximation in space developed in
this paper. Let u(x, t) be solution of the advection equation ∂tu = ∂xu. Averaging over the cell Tα gives
(see Sec. 4.1):

dūα(t)

dt
=

1

hα

[
u(xα+1/2, t)− u(xα−1/2, t)

]
, with hα = |Tα|. (9.1)

The approximation t 7→ vα(t) of ūα(t) is solution of:

dvα(t)

dt
=

1

hα

[
wα[V (t)](x−α+1/2)− wα[V (t)](x−α−1/2)

]
. (9.2)

where V (t) = [v1(t), . . . , vN (t)] and wα[V ](x) is the cubic polynomial (2.36). Let u(x) be any regular
function and U = [ū1, . . . , ūN ]. The accuracy analysis consists in evaluating p > 0 such that Hα(u) =
O(hp) where

Hα(u) =
1

hα

[
u(xα+1/2)− u(xα−1/2)

]
− 1

hα

[
wα[U ](x−α+1/2)− wα[U ](x−α−1/2)

]
. (9.3)

Define the operator L−α+1/2(u) by

L−α+1/2(u) = u(xα+1/2)− wα[U ](x−α+1/2). (9.4)

Then Hα(u) becomes:

Hα(u) =
1

hα

[
L−α+1/2(u)− L−α−1/2(u)

]
. (9.5)

In the particular case of a regular grid (hα = h for all α), the operator L−α+1/2 is given by (see (4.15)):

L−α+1/2(u) = u(xα+1/2)−

(
ūα +

1

2
hσ̃α +

1

12
h2θ̃α +

1

48
h3ψ̃α

)
, (9.6)

where the notation is (see (4.12-4.13)):

σ̄LSα =
ūα+1 − ūα−1

2h
,

σ̃α =
53

48
σ̄LSα − 5

96
σ̄LSα+2 −

5

96
σ̄LSα−2,

θ̃α =
1

2h

(
σ̄LSα+1 − σ̄LSα−1

)
,

ψ̃α =
1

(2h)2

(
σ̄LSα+2 + σ̄LSα−2 − 2σ̄LSα

)
.

(9.7)

The Taylor expansion of Hα(u) at xα is (see (4.21)):

Hα(u) = − 17

384
h4∂(5)x u(xα) +

229

3840
h5∂(6)x u(xα) +O(h6). (9.8)

This proves Prop. 4.1, i.e. the fourth order accuracy of the scheme.
When hα is non constant the evaluation of the order p > such that Hα(u) = O(hp) is more delicate.

In particular, it cannot be performed by a Fourier symbol calculation. We show next how the Peano
Kernel Theorem ([24], chap. 22, p.270) can provide a set of sufficient conditions on the irregularity of
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the grid in order for (9.2) to keep a high order accuracy. For simplicity of the presentation, the analysis
is restricted to the case of the piecewise linear reconstruction defined by

wα[V ](x) =

(
vα + σα[V ](x− xα)

)
(9.9)

where σα is the least squares slope [12, 15] given by:

σα =
hα,α+1

h2α,α−1 + h2α,α+1

(vα+1 − vα) +
hα,α−1

h2α,α−1 + h2α,α+1

(vα−1 − vα). (9.10)

The same analysis can be extended to the cubic reconstruction case. Instead of (9.6) the operator
L−α+1/2(u) is in the case of a linear reconstruction:

L−α+1/2(u) = u(xα+1/2)−
(
ūα +

1

2
hασ̃α

)
. (9.11)

Since L−α+1/2(p) = 0 when p(x) is any polynomial of degree 1, the Peano Kernel Theorem implies that
L−α+1/2 can be expressed as

L−α+1/2(u) =

∫ xα+1/2

xα−1/2

K−α+1/2(θ)u′′(θ)dθ. (9.12)

The kernel K−α+1/2(θ) is

K−α+1/2(θ) =
1

2
L−α+1/2,x{(x− θ)+}, (9.13)

where the operator L−α+1/2 is applied in the x−variable. A simple calculation shows that K−α+1/2(θ) is
expressed as the second order polynomial

K−α+1/2(θ) = aα(xα+1/2 − θ)2 + bα(xα+1/2 − θ) + cα, (9.14)

with coefficients (we denote hα+1/2 = (hα + hα+1)/2):

aα = − 1

4hα
+

1

8

hα+1/2 − hα−1/2
h2α+1/2 + h2α−1/2

,

bα =
1

2
− 1

4

hαhα+1/2

h2α+1/2 + h2α−1/2
,

cα = −1

8

hαhα+1/2hα+1

h2α+1/2 + h2α−1/2
.

(9.15)

Consider now that α is a continuous parameter such that α 7→ x(α) describes the variation of the grid
size. The grid size hα = h(α) is defined by

h(α) = x′(α) with the additional assumption that h(α) = O(h). (9.16)

The relations (9.15) become:

a(α) = − 1

4h(α)
+

1

8

h(α+ 1/2)− h(α− 1/2)

h2(α+ 1/2) + h2(α− 1/2)
,

b(α) =
1

2
− 1

4

h(α)h(α+ 1/2)

h2(α+ 1/2) + h2(α− 1/2)
,

c(α) = −1

8

h(α)h(α+ 1/2)h(α+ 1)

h2(α+ 1/2) + h2(α− 1/2)
.

(9.17)
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Using a change of variable, Hα(u) in (9.5) is expressed as:

Hα(u) =
1

h(α)

∫ 1

0

{[
a(α)h(α)3τ2 + b(α)h(α)2τ + c(α)h(α)

]
u′′
(
x(α+ 1/2)− τh(α)

)
−
[
a(α− 1)h(α− 1)3τ2 + b(α)h(α− 1)2τ + c(α)h(α− 1)

]
u′′
(
x(α− 1/2)− τh(α− 1)

)}
dτ.

(9.18)

Define (σ, τ) ∈ [α− 1, α]× [0, 1] 7→ A(σ, τ) by

A(σ, τ) = a(σ)h(σ)3τ2 + b(σ)h(σ)2τ + c(σ)h(σ), (9.19)

where, for σ ∈ [α− 1, α], the values a(σ), b(σ), c(σ) are given in (9.17) when replacing hα by h(σ) in the
right-hand side. Then Hα(u) is rewritten as

Hα(u) =
1

h(α)

∫
[α−1,α]×[0,1]

∂

∂σ

[
A(σ, τ)u′′

(
x(σ + 1/2)− τh(σ)

)]
dσdτ. (9.20)

Therefore by the mean value theorem for integrals, |Hα(u)| is estimated by

|Hα(u)| ≤ 1

h(α)

∫
[α−1,α]×[0,1]

∣∣∣ ∂
∂σ

[A(σ, τ)u′′
(
x(σ + 1/2)− τh(σ)

)
]
∣∣∣dτdσ. (9.21)

Finally we have

∂

∂σ

[
A(σ, τ)u′′(x(σ + 1/2)− τh(σ))

]
=
∂A(σ, τ)

∂σ
u′′
(
x(σ + 1/2)− τh(σ)

)
(9.22)

+A(σ, τ)
(
h(σ + 1/2)− τh′(σ)

)
u′′′
(
x(σ + 1/2)− τh(σ)

)
.

This estimate leads to the following result:

Proposition 9.1. The scheme (9.2) is second order accurate withy respect to (9.1) under the sufficient
condition on the variation of the grid α 7→ x(α), given by the relations

max
σ,τ
| ∂∂σA(σ, τ)| ≤ Ch3,

max
σ,τ
|A(σ, τ)|

(
|h(σ)|+ |h′(σ)|

)
≤ Ch3.

(9.23)

Remark 9.2. In the case of a regular grid of size h, the function h(α) is the constant h(α) = h. We
have

A(σ, τ) = h2

(
1

4
τ2 +

3

8
τ − 1

16

)
. (9.24)

Therefore ∂σA = 0 and A = O(h2). Due to the fact that h′(σ) = 0, Prop 9.1 proves the second order
accuracy of the scheme (9.2) and therefore we recover (9.8.)

Remark 9.3. Proposition 9.1 only claims that the accuracy is preserved when the grid is a slight
perturbation of a regular grid in the sense of (9.23). The magnitude of the perturbation is measured
by the variation of the function A(σ, τ). Therefore the problem of the accuracy analysis of the scheme
(9.2) on grids with cells presenting large shape ratio remains an open question.
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