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Abstract. In the companion paper [J.-B. Bellet, M. Brachet & J.-P. Croisille, Interpolation
on the Cubed Sphere with Spherical Harmonics, Preprint, 2021], a spherical harmonic subspace
associated to the Cubed Sphere has been introduced. This subspace is further analyzed here.
In particular, it permits to define a new Cubed Sphere based quadrature. This quadrature
inherits the rotational invariance properties of the spherical harmonic subspace. Contrary to
Gaussian quadrature, where the set of nodes and weights is solution of a nonlinear system, only
the weights are unknown here. Despite this conceptual simplicity, the new quadrature displays
an accuracy comparable to optimal quadratures, such as the Lebedev rules.
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1. Introduction

We introduce a new quadrature rule defined on the equiangular Cubed Sphere grid.
Let CSN ⊂ S2 denote the Cubed Sphere with parameter N . In [6], a finite dimensional

spherical harmonic subspace has been associated to the set of nodes CSN . This subspace, called
UN hereafter, provides existence and uniqueness to the Lagrange interpolation, with CSN as set
of nodes. Here our goal is to use the space UN and the nodes of CSN to define a new quadrature
rule on the sphere S2.

The design of quadrature rules on the sphere can be classified as follows (see [13, Chap.40]
and the references therein). In a first approach, one seeks a global system with the nodes and
the weights as unknowns. Typical examples are the Lebedev rules [14] or the rule in [1]. In a
second approach, the weights are supposed given and the nodes are unknown. This is the case in
the theory of t-designs. We refer to [10] for a review. A third approach consists in imposing the
set of nodes from the beginning and to have the weights as unknown. A particular case is the
interpolatory approach, where the quadrature rule is obtained by integrating an interpolation
polynomial. In this case, the choice of the nodes is crucial for the quality of the rule, [13, Chap.40,
pp. 1200 sqq.]. In the present paper, we are in the latter case: we define a quadrature rule on
CSN , by interpolation in the space UN of spherical harmonics mentioned above.

Here the Cubed Sphere nodes are selected from the beginning as “good” quadrature nodes,
and therefore, only the weights must be identified. In [16], two examples of weights have been
suggested. The first one was based on some extended trapezoidal rule, attributing some area to
each node. The second one was defined as a perturbation of the first one with a design based on
some optimization principle. See also [7] for another rule, including a Simpson like formula. Here
we come back to the general question of the “best choice” of weights associated to the Cubed
Sphere nodes. As in the general approach, we require exactness of the quadrature for a particular
set of spherical harmonics. Using the space UN in [6] immediately delivers a quadrature rule.
This quadrature is different from the ones mentioned above. The space UN remarkably enjoys
invariance under the action of the group of the cube. This is somehow expected, since the
group of CSN is in fact the group of the cube, (or of the octahedron) [5]. As will be shown
below, the new quadrature rule inherits this invariance. This property is highly desirable. It
is well known that group invariance is the backbone for the design of highly accurate spherical
quadratures, [1, 14,15,18].
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The paper is organized as follows. Section 2 gives the notation on the spherical harmonics,
the Cubed Sphere and its group. Section 3 recalls how the space UN is defined and Section 4
establishes several of its invariance properties. In Section 5, the new quadrature is introduced.
By construction, this quadrature is exact on the space UN . In addition, it is invariant under the
octahedral group. This implies that it is exact for a proportion of 15/16 of all (real) Legendre
spherical harmonics. Finally in Section 6, we display numerical results for a large series of test
cases. It is observed that the new rule is only slightly suboptimal, when compared to the optimal
Lebedev rules. This somehow supports the main Ansatz of this study, namely that the Cubed
Sphere nodes are good quadrature nodes on the sphere. 1

2. Background and notation

The real Legendre spherical harmonics of degree n are normalized as follows:

Y m
n (x) = Y m

n (θ, φ) = (−1)|m|
√

(n+1/2)(n−|m|)!
π(n+|m|)! P |m|n (sin θ)×


sin |m|φ, m < 0,

1√
2
, m = 0,

cosmφ, m > 0.

Here, P |m|n (t) = (−1)|m|(1− t2)|m|/2 d|m|+n

dt|m|+n
1

2nn!(t
2 − 1)n is the associated Legendre function, and

we set x = (cos θ cosφ, cos θ sinφ, sin θ) with (θ, φ) ∈ [−π
2 ,

π
2 ] × [−π, π], the latitude/longitude

angles. The family (Y m
n )−n≤m≤n is an orthonormal basis of the subspace Yn ⊂ L2(S2), for the

inner product

〈u, v〉L2(S2) =

∫
S2
u(x)v(x)dσ.

The infinite family (Y m
n )|m|≤n,n∈N is a Hilbert basis of L2(S2).

The equiangular Cubed Sphere CSN ⊂ S2, is defined by

CSN :=
{

1√
1+u2+v2

(±1, u, v), 1√
1+u2+v2

(u,±1, v), 1√
1+u2+v2

(u, v,±1);

u = tan iπ
2N , v = tan jπ

2N ,−
N
2 ≤ i, j ≤

N
2

}
.

For ease of notation, we denote the nodes of CSN by xi, 1 ≤ i ≤ N̄ , where N̄ = 6N2 + 2 is the
cardinal number:

CSN = {xi, 1 ≤ i ≤ N̄}.
The symmetry group of the Cubed Sphere is given in the following theorem [5].

Theorem 1 (Symmetry group of the Cubed Sphere). An orthogonal matrix Q leaves the Cubed
Sphere CSN invariant if, and only if, it leaves the octahedron

{(±1, 0, 0), (0,±1, 0), (0, 0,±1)}

invariant. In other words, the symmetry group G of CSN is exactly the full octahedral group. Its
matrix representation is given by

G =
{[
ε1eσ1 ε2eσ2 ε3eσ3

]
, σ ∈ S3, ε ∈ {−1, 1}3

}
, with e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

The space of real functions defined on CSN is denoted by

F(CSN ) = {f : CSN → R}.

The canonical basis (δxi)1≤i≤N̄ of F(CSN ) is defined by

δxi(xj) = δij =

{
1, if i = j,

0, otherwise,
1 ≤ i, j ≤ N̄ .

1Appendix A reports URLs with some available quadrature rules. In particular, the new rule QN data are
available in an open archiv.
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In this basis, any f ∈ F(CSN ) is represented by the column vector [f(xi)]1≤i≤N̄ ∈ RN̄ , due to
the decomposition

f =
N̄∑
i=1

f(xi)δxi .

For any real function defined on the sphere, u : x ∈ S2 7→ u(x) ∈ R, the restriction of u on CSN
is the function defined by

u|CSN
:=

N̄∑
i=1

u(xi)δxi ∈ F(CSN ), u|CSN
(xi) = u(xi), 1 ≤ i ≤ N̄ . (1)

3. Interpolation on the Cubed Sphere with spherical harmonics

In [6], we have introduced a subspace UN of real spherical harmonics, dedicated to Lagrange
interpolation on the Cubed Sphere CSN . Our presentation here is deduced from intrinsic prop-
erties of UN proved in [6]2.

First, we introduce a subspace Wn of spherical harmonics of degree n, defined by

W0 := {0}, Wn := {u ∈ Yn : ∃v ∈ Y0 ⊕ · · · ⊕ Yn−1, u|CSN
= v|CSN

}, n ≥ 1. (2)

Intuitively, Wn contains spherical harmonics of degree n which are undersampled on CSN . Sec-
ond, we build an orthogonal decomposition based on this subspace,

Yn = Vn ⊕Wn, with Vn := (Wn)⊥Yn = {u ∈ Yn : ∀v ∈ Wn, 〈u, v〉L2(S2) = 0}. (3)

In the orthogonal complement Vn, any spherical harmonics can be reconstructed by interpolation
on CSN (unlike Wn). This claim is part of the following theorem [6].

Theorem 2. There exists an integer N ′ such that the Lagrange interpolation problem has always
a unique solution in V0 ⊕ · · · ⊕ VN ′, i.e.

∀f ∈ F(CSN ), ∃!u ∈ V0 ⊕ · · · ⊕ VN ′ , u|CSN
= f, (i.e., ∀1 ≤ j ≤ N̄ , u(xj) = f(xj)). (4)

This theorem justifies the following definition.

Definition 3 (Interpolation space). Let Vn denote the orthogonal complement (3) of the under-
sampled subspace Wn, defined by (2). The interpolation space on CSN is defined as

UN := V0 ⊕ · · · ⊕ VN ′ , (5)

where N ′ ≥ 0 is the smallest integer such that (4) is realized.

We refer to [6] for a practical algorithm to compute a real orthonormal basis of UN , denoted
here by (uj)1≤j≤N̄ . Then,

uj ∈ UN , 〈ui, uj〉L2(S2) = δij , 1 ≤ i, j ≤ N̄ .

Without loss of generality, the first basis function is u1(x) = 1√
4π
∈ Y0. By definition of UN , the

following linear map is isomorphic:
TN : UN −→ F(CSN )

u 7−→ u|CSN
.

The matrix of TN , in the canonical basis (δxi)1≤i≤N̄ of F(CSN ), and the basis (uj)1≤j≤N̄ of UN ,
is the Vandermonde matrix given by

A = [uj(xi)]1≤i,j≤N̄ , (6)

where i is the row index, and j is the column index. In (4), the solution u ∈ UN is given by
u = T−1

N f ∈ UN . This suggests to define an interpolation operator, by IN := T−1
N . Then, the

unique element of UN interpolating f ∈ F(CSN ) is given by INf ∈ UN , and is represented by
the column vector A−1[f(xi)] ∈ RN̄ ,

INf(x) = [uj(x)]A−1[f(xi)], x ∈ S2.

2The space UN was denoted by Y ′
N′ in [6].
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4. Rotational invariance of the interpolation space

In this section, we study the invariance of the interpolation space UN under the symmetry
group G of the Cubed Sphere. We call “rotated” a function defined as follows.

Definition 4 (“Rotated” function). Assume that Q ∈ G leaves a set E invariant, i.e. QᵀE = E.
Let f : E → R be a function defined on E. The “rotated” function, denoted by f(Qᵀ·), is the
function

f(Qᵀ·) : x ∈ E 7→ f(Qᵀx) ∈ R.

Our main invariance result is the following theorem.

Theorem 5 (Invariance of the interpolation space). Let n ≥ 0.
(i) The undersampled subspace Wn is invariant under G, i.e.

∀Q ∈ G, ∀u ∈ Wn, u(Qᵀ·) ∈ Wn.

(ii) The subspace Vn =W⊥n is invariant under G, i.e.
∀Q ∈ G, ∀u ∈ Vn, u(Qᵀ·) ∈ Vn.

(iii) The interpolation space UN is invariant under G, i.e.
∀Q ∈ G, ∀u ∈ UN , u(Qᵀ·) ∈ UN .

Proof. Fix Q ∈ G, i.e. Q ∈ R3×3 is an orthogonal matrix such that QᵀCSN = CSN .
(i) If n = 0, W0 = {0} is invariant under G. Fix now u ∈ Wn ⊂ Yn with n ≥ 1. There exists
v ∈ Y0⊕· · ·⊕Yn−1 such that u|CSN

= v|CSN
, or equivalently, (u−v)|CSN

= 0. Firstly, u(Qᵀ·) ∈ Yn
and v(Qᵀ·) ∈ Y0 ⊕ · · · ⊕ Yn−1. Secondly, (u(Qᵀ·)− v(Qᵀ·)) |CSN

= (u − v)|CSN
(Qᵀ·) = 0, and

therefore u(Qᵀ·)|CSN
= v(Qᵀ·)|CSN

; here, the commutation between rotation and restriction is
justified by the following lemma.

Lemma 6 (Rotation commutes with restriction). For all Q ∈ G, n ≥ 0, and u ∈ Y0 ⊕ · · · ⊕ Yn,
u(Qᵀ·)|CSN

= u|CSN
(Qᵀ·) ∈ F(CSN ).

We postpone the proof of the lemma until the end of this section.
(ii) The result is a combination of (i) and Vn =W⊥n . Indeed, fix u ∈ Vn ⊂ Yn with n ≥ 0. Then
u(Qᵀ·) ∈ Yn. Furthermore, for every v ∈ Wn,

〈u(Qᵀ·), v〉L2(S2) =

∫
S2
u(Qᵀx)v(x)dσ =

∫
S2
u(y)v(Qy)dσ = 〈u, v(Q·)〉L2(S2) ; (y := Qᵀx).

Wn is invariant under G, so v(Q·) ∈ Wn. Then v(Q·) is orthogonal to u since u ∈ W⊥n . Therefore
〈u(Qᵀ·), v〉 = 〈u, v(Q·)〉 = 0, which proves that u(Qᵀ·) ∈ W⊥n .
(iii) The space UN = V0 ⊕ · · · ⊕ VN ′ is a sum of invariant subspaces due to (ii). �

Corollary 7 (Interpolation and symmetry). (i) The interpolation operator commutes with any
symmetry of the group G:

∀f ∈ F(CSN ), ∀Q ∈ G, [INf ](Qᵀ·) = IN [f(Qᵀ·)].
(ii) The interpolation operator preserves the invariance property; in other words, if f ∈ F(CSN )
is invariant under G, i.e. ∀Q ∈ G, f(Qᵀ·) = f , then INf is invariant under G, i.e. ∀Q ∈
G, [INf ](Qᵀ·) = INf .

Proof. (i) Firstly, f(Qᵀ·) ∈ F(CSN ) and u = IN [f(Qᵀ·)] ∈ UN is the unique element of UN such
that u|CSN

= f(Qᵀ·). Secondly, v = INf ∈ UN is the unique element of UN such that v|CSN
= f .

Due to Theorem 5.(iii), v(Qᵀ·) ∈ UN . By Lemma 6, v(Qᵀ·)|CSN
= v|CSN

(Qᵀ·) = f(Qᵀ·), which
proves u = v(Qᵀ·). (ii) is an immediate consequence of (i). �

Proof of Lemma 6. Firstly, Y0 ⊕ · · · ⊕ Yn is invariant under the action of Q. Therefore [u(Qᵀ·) :
x ∈ S2 7→ u(Qᵀx)] ∈ Y0 ⊕ · · · ⊕ Yn, and u(Qᵀ·)|CSN

is defined by

u(Qᵀ·)|CSN
=

N̄∑
i=1

u(Qᵀxi)δxi ∈ F(CSN ).
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On the other hand, [u|CSN
: x ∈ CSN 7→ u(x)] ∈ F(CSN ), with CSN left invariant by Q. Then

the function u|CSN
(Qᵀ·) is well-defined and is given by

u|CSN
(Qᵀ·) : x ∈ CSN 7→ u(Qᵀx) ∈ F(CSN ).

At every x = xi ∈ CSN , the two functions have the same value, u(Qᵀxi). �

5. A new quadrature on the Cubed Sphere

In this section, we introduce a new quadrature rule on CSN ; it is defined by interpolation as
follows.

Theorem 8 (Quadrature rule). Let u : S2 → R be a given function. The quadrature rule QN is
defined by

QNu :=

∫
S2
IN [u|CSN

](x)dσ.

(i) The formula QN can be expressed as follows:

QNu =

N̄∑
j=1

ωN (xj)u(xj), (7)

where the weight function ωN ∈ F(CSN ) is defined by

[ωN (xj)] = (Aᵀ)−1[
√

4π 0 · · · 0]ᵀ, (8)

with A the Vandermonde matrix (6).
(ii) The formula QN is exact on the space UN in (5), i.e.

∀u ∈ UN , QNu =

∫
S2
u(x)dσ.

(iii) The rule QN and the weight function ωN is invariant under the group G of CSN , i.e.

∀Q ∈ G, ∀u ∈ UN , QN (u(Qᵀ·)) = QN (u), and ωN (Qᵀ·) = ωN .

Proof. (i-ii) Firstly, if u ∈ UN , QN exactly integrates u, since u coincides with INu. In particular,
for each basis function uj ∈ UN , QNuj =

∫
S2 uj(x)dσ. For u1 = 1√

4π
,
∫
S2 u1(x)dσ =

√
4π. For

every 1 ≤ j ≤ N̄ , uj ⊥ u1, which means
∫
S2 uj(x)dσ = 0. Then, [QNuj ]1≤j≤N̄ = [

√
4π 0 · · · 0]ᵀ.

Secondly, define ωN ∈ F(CSN ) by

ωN (xi) =

∫
S2
IN [δxi ]dσ, 1 ≤ i ≤ N̄ . (9)

By linearity, we deduce from (1) that

QNu =
N̄∑
i=1

ωN (xi)u(xi) = [u(xi)]
ᵀ[ωN (xi)].

Using the basis functions, we obtain

Aᵀ[ωN (xi)]1≤i≤N̄ = [QNuj ]1≤j≤N̄ = [
√

4π 0 · · · 0]ᵀ,

This gives (8) using the fact that the matrix Aᵀ ∈ RN̄×N̄ is non singular.

Remark 9. In [6], a LQ-factorization of Aᵀ is computed, Aᵀ = LQ where L is lower triangular
and Q is orthogonal. Thus, the weight function ωN is calculated from a linear system with matrix
L as [ωN (xj)] = QᵀL−1[

√
4π 0 · · · 0]ᵀ.

(iii) Fix Q ∈ G and u ∈ UN . By Theorem 5, u(Qᵀ·) ∈ UN . Thus, using (ii) and a change of
variable yields

QN (u(Qᵀ·)) =

∫
S2
u(Qᵀx)dσ =

∫
S2
u(x)dσ = QN (u).
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Fix now 1 ≤ i ≤ N̄ and denote u = INδxi ∈ UN . By Corollary 7, u(Qᵀ·) = IN [δxi(Q
ᵀ·)] ∈ UN ,

with δxi(Qᵀ·) = δQxi . Therefore by (9), QN (u) = ωN (xi) and QN (u(Qᵀ·)) = ωN (Qxi). Then,
by invariance of QN ,

ωN (xi) = QN (u) = QN (u(Qᵀ·)) = ωN (Qxi). �

According to Theorem 8 (ii), the quadrature rule QN exactly integrates the N̄ spherical
harmonics of UN . Taking benefit from the rotational invariance, we prove furthermore that it
exactly integrates an infinite number of spherical harmonics.

Corollary 10. The quadrature rule QN exactly integrates a ratio of 15
16 of all real Legendre

spherical harmonics. More precisely, for all |m| ≤ n,

QN (Y m
n ) =

∫
S2
Y m
n (x)dσ, if


n ≡ 1 (2),

or, m < 0,

or, m ≥ 0 and m ≡ 1, 2, 3 (4);

equivalently, QN (Y m
n ) 6=

∫
S2 Y

m
n (x)dσ ⇒ n ≡ 0 (2), m ≥ 0 and m ≡ 0 (4).

Proof. Fix n ≥ 1 and |m| ≤ n. Then
∫
S2 Y

m
n (x)dσ = 0. For well chosen integers n, m, we build

a symmetry Q ∈ G such that Y m
n (Qᵀ·) = −Y m

n . This will imply QN (Y m
n ) = QN (Y m

n (Qᵀ·)) =
−QN (Y m

n ), which proves QN (Y m
n ) = 0 =

∫
S2 Y

m
n (x)dσ. In the spherical coordinate system

x(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ), φ ∈ [−π, π], θ ∈ [−π
2 ,

π
2 ], we denote Y m

n (x(θ, φ)) :=
Y m
n (θ, φ).
Case 1: n ≡ 1 (2) and m ≡ 0 (4). Then θ 7→ P

|m|
n (sin θ) is odd, so is θ 7→ Y m

n (x(θ, φ)); hence,

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(−θ, φ)) = −Y m
n (x(θ, φ)), for Q :=

1 0 0
0 1 0
0 0 −1

 .
Case 2: m < 0. Then φ 7→ Y m

n (x(θ, φ)) is odd, so,

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(θ,−φ)) = −Y m
n (x(θ, φ)), for Q :=

1 0 0
0 −1 0
0 0 1

 .
Case 3: m ≡ 1, 3 (4). Then m(φ+ π) ≡ mφ+ π (2π), and

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(θ, φ+ π)) = −Y m
n (x(θ, φ)), for Q :=

−1 0 0
0 −1 0
0 0 1

 .
Case 4: m ≡ 2 (4). Then m(φ+ π

2 ) ≡ mφ+ π (2π), and

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(θ, φ+ π
2 )) = −Y m

n (x(θ, φ)), for Q :=

 0 1 0
−1 0 0
0 0 1

 . �

Remark 11. In Corollary 10 (and its proof), the quadrature rule QN can be replaced by any
linear form Q : L2(S2)→ R which is invariant under the octahedral group G. In particular, the
15/16-property of the corollary holds for any spherical quadrature with octahedral symmetry.
Therefore Corollary 10 also holds for the Lebedev rules [14].

Remark 12. The ratio "15/16" of the real Legendre basis is obtained asymptotically. In [7, 16],
a similar approach based on invariance properties reported an asymptotic ratio of 7/8 of the
complex Legendre basis exactly integrated. Here, in the proof of Corollary 10, the real Legendre
basis is used instead. Using this basis allows to prove that exact quadrature actually holds up
to the ratio of 15/16 of all spherical harmonics.
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6. Numerical results

6.1. Symmetry invariance assessment. We begin by two numerical assessments related to
interpolation in UN .

First, we illustrate that the interpolation operator IN preserves the invariance property, as
stated in Corollary 7.(ii). Fix N = 6 and consider the series of symmetric functions gi ∈ F(CSN ),
described in Table 1. By construction, each function gi, 1 ≤ i ≤ 6, is constant along any orbit,
i.e. ∀Q ∈ G, gi(Qᵀ·) = gi, and is supported by a set of symmetric nodes. For i ≤ 5, gi takes
the value 1 along the orbit of ai ∈ CSN , and the value 0 otherwise. The orbit of a1 contains
the vertices of an octahedron. The orbit of a2 contains the vertices of a cube. The orbit of
a3 contains the vertices of a cubaoctahedron. The orbit of a4 is included in the edges of an
octahedron. The orbit of a5 is “generic”, with cardinal number 48. The Figure 1 displays how
the symmetry is reflected in the interpolating functions INgi ∈ UN , 1 ≤ i ≤ 6. The octahedral
symmetry predicted by Corollary 7.(ii) can be observed; the functions INgi are constant along
any orbit.

i gi ai | supp gi|

1 1
8

∑
Q∈G δQa1 [1 0 0]ᵀ 6

2 1
6

∑
Q∈G δQa2

1√
3
[1 1 1]ᵀ 8

3 1
4

∑
Q∈G δQa3

1√
2
[1 0 1]ᵀ 12

4 1
2

∑
Q∈G δQa4 (1 + tan2 π

6 )−1/2[1 0 tan π
6 ]ᵀ 24

5
∑

Q∈G δQa5 (1 + tan2 π
12 + tan2 π

6 )−1/2[1 tan π
12 tan π

6 ]ᵀ 48

6 g1 + g2 + g3 + g4 + g5 98

Table 1. Grid functions with octahedral symmetry. Each function gi, 1 ≤ i ≤ 6,
takes the value 1 on its support and is invariant under G.

Figure 1. Interpolation with octahedral symmetry. For every 1 ≤ i ≤ 6, the
symmetric function INgi is represented by the surface (1.5 + INgi(x))x, x ∈ S2.

Second, we assess the invariance of the interpolation space, stated in Theorem 5, and the
commutation between interpolation and rotation, stated in Corollary 7.(i). For that purpose, for
each basis function uj ∈ UN , we compare uj(Qᵀ·) = [INuj ](Qᵀ·) with IN [uj(Q

ᵀ·)]. Indeed, by
linearity, Corollary 7.(i) is equivalent to:

∀1 ≤ j ≤ N̄ , ∀Q ∈ G, [INuj ](Qᵀ·) = IN [uj(Q
ᵀ·)].
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If this condition is achieved, then for each basis function uj , uj(Qᵀ·) = [INuj ](Qᵀ·) ∈ Ran IN =
UN , which implies Theorem 5.(iii) by linearity. This also implies Theorem 5.(ii), due to uj(Qᵀ·) ∈
Yn∩UN = Vn. We compare the functions on a fine grid CSM (M = 33), by computing the relative
error

εN,j(Q) :=
maxx∈CSM

|uj(Qᵀx)− IN [uj(Q
ᵀ·)](x)|

maxx∈CSM
|uj(x)|

.

Then we compute the maximal error εN , and we repeat the procedure for several values of N :

εN := max{εN,j(Q), Q ∈ G, 1 ≤ j ≤ N̄(N)}, 1 ≤ N ≤ 16. (10)

The results reported in Table 2 are in agreement with the invariance stated in Theorem 5 and
Corollary 7.(i).

N 1 2 3 4 5 6 7 8
εN 2.5e-15 3.4e-15 7.8e-15 1.4e-14 9.7e-15 9.3e-15 1.3e-14 1.1e-14

N 9 10 11 12 13 14 15 16
εN 1.4e-14 1.5e-14 1.9e-14 1.7e-14 3.4e-14 2.2e-14 1.8e-14 2.9e-14

Table 2. Numerical invariance: uj(Qᵀ·) = IN [uj(Q
ᵀ·)], Q ∈ G, up to relative

error εN (10).

6.2. Quadrature weight. We have computed the quadrature weight function ωN ∈ F(CSN )
for 1 ≤ N ≤ 32, and N = 64. Some of them are displayed in Figure 2. As can been observed,
the weight appears to be positive, ωN > 0. The maximum value is reached at the center of a
panel. Some statistics of the weights are given in Figure 3. It reveals that the distribution of the
weights ωN is quasi-uniform. In particular,

maxωN
minωN

≈
√

2.

This coincides with the ratio between the surface element at the center of a panel of CSN , and
the smallest surface element of a panel, (see [17, Eq. (20)]).

Figure 2. Representation of the weight values ωN , for the eight Cubed Spheres
with 1 ≤ N ≤ 8.

6.3. Quadrature of test functions. We test the accuracy of the quadrature formula QN on
the series of functions reported in Table 3. They are displayed in Figure 4. These functions
serve as testing functions for quadrature assessment. References are indicated in Table 3. The
exponential function f1 is a smooth, non-trivial function. The Franke function f2 is a standard
test case. The function f3 is smooth, except near the South pole, where it has an infinite spike.
The cosine cap function f4 is continuous but is not differentiable on the circle z =

√
3

2 . The
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Figure 3. Statistical distribution of the weight values ωN in (7), 1 ≤ N ≤
32. The maximum, minimum, and mean values satisfy maxωN ≈ 1.41 minωN ,
maxωN ≈ 1.18 ω̄N , and minωN ≈ 0.83 ω̄N .

i fi(x, y, z)
∫
S2 fi(x, y, z)dσ Ref.

1 exp(x) 14.7680137457653 · · · [3, 11]
2 3

4 exp[− (9x−2)2

4 − (9y−2)2

4 − (9z−2)2

4 ] 6.6961822200736179523 · · · [2, 4, 7, 12,16]
+ 3

4 exp[− (9x+1)2

49 − 9y+1
10 −

9z+1
10 ]

+ 1
2 exp[− (9x−7)2

4 − (9y−3)2

4 − (9z−5)2

4 ]
− 1

5 exp[−(9x− 4)2 − (9y − 7)2 − (9z − 5)2]

3 1
10

exp(x+2y+3z)
(x2+y2+(z+1)2)1/2

1(z > −1) 4.090220018862976 · · · [2]
4 cos(3 arccos z)1(3 arccos z ≤ π

2 ) π
8 inspired from [2]

5 1(z ≥ 1
2 ) π

6 1
9 [1 + sign(−9x− 9y + 9z)] 4π

9 [4, 7, 12,16]

Table 3. Several test functions and exact mean values.

Figure 4. Test functions of Table 3.

function f5 is the characteristic function of a spherical cap; it is not continuous. Similarly, the
discontinuous function f6 represents a hemisphere; it is a standard test function.

We report in Table 4 the quadrature error

ηN (fi) =

∣∣∣∣∫
S2
fidσ −QNfi

∣∣∣∣ , N = 1, 2, 4, 8, 16, 32, 64, 1 ≤ i ≤ 6.
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N N̄ ηN (f1) ηN (f2) ηN (f3) ηN (f4) ηN (f5) ηN (f6)

1 8 4.8e-02 8.2e-01 2.4e-01 3.9e-01 3.1e+00 6.7e-16
2 26 2.0e-06 1.5e-02 1.7e-02 2.1e-01 9.9e-01 0.0e+00
4 98 1.2e-14 2.2e-03 7.8e-03 2.0e-02 6.7e-02 2.2e-16
8 386 1.8e-15 9.0e-06 3.8e-03 4.8e-03 6.4e-02 6.7e-16
16 1538 7.1e-15 5.5e-09 1.9e-03 3.0e-04 1.5e-02 6.7e-16
32 6146 5.3e-15 1.8e-15 9.5e-04 3.1e-04 7.9e-03 6.7e-16
64 24578 3.6e-15 1.8e-15 4.8e-04 1.9e-07 2.6e-03 4.4e-16

Table 4. Quadrature error ηN (fi) = |
∫
S2 fidσ−QNfi| for the series of functions

in Table 3

N rN (f1) rN (f2) rN (f3) rN (f4) rN (f5) r̄N (f1) r̄N (f2) r̄N (f3) r̄N (f4) r̄N (f5)

1 15 5.8 3.9 0.93 1.7 15 2.8 5.4 2.5 -0.0033
2 27 2.7 1.1 3.4 3.9 26 3.3 1.1 3.3 1.8
4 2.8 7.9 1 2.1 0.077 2.1 4.1 1 1.9 1.3
8 11 1 4 2.1 13 1.2 2.8 1.7

16 22 1 -0.047 0.92 24 0.92 2.2 1.4
32 1 11 1.6 0.93 2.7 1.6

Table 5. Convergence rate rN (fi) of the error ηN (fi), and convergence rate
r̄N (fi) of the average error ε̄N (fi), over 1000 random orthogonal transformations
of the grid.

Moreover, Table 5 reports a rate of convergence rN (fi), defined by the equation

η2N (fi) =
ηN (fi)

2rN (fi)
.

Note that the computations have been performed with Matlab, in double precision. In particular
the machine epsilon is approximately 2.2× 10−16; we do not compute the rate when the relative
error is close to this value. For the smooth function f1, the error rapidly reaches a value which
is about 10−14. For the Franke function f2, a thinner grid is required to reach such values,
but a very fast convergence is still observed. For the spike function f3, the convergence rate is
rN (f3) ≈ 1. For the continuous cap function f4, and the discontinuous one f5, the error slowly
decreases at a convergence rate depending on the grid size. For the cap function f6, which is
discontinuous and “symmetric” (supported by a hemisphere), the error is close to the machine
epsilon, independently of the grid size.

6.4. Sensitivity to the grid orientation. Here we consider more closely the accuracy of the
rule QN : we modify randomly the orientation of the grid, [12,16]. We compute

εN (fi, Q) =

∣∣∣∣∫
S2
fidσ −QNfi(Qᵀ·)

∣∣∣∣ ,
where Q browses a set of 1000 randomly selected orthogonal matrices (uniform law in [0, 2π] for
the Euler angles, and uniform law in {−1, 1} for the orientation). The worst error, the average
error and their ratio are defined by

εN (fi) = max
Q

εN (fi, Q), ε̄N (fi) = 1
1000

∑
Q

εN (fi, Q), ρN (fi) =
ε̄N (fi)

εN (fi)
.
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Figure 5. Statistics of the quadrature error εN (fi, Q) = |
∫
S2 fidσ−QNfi(Q

ᵀ·)|,
where Q scans a set of 1000 random orthogonal matrices. Left: worst error εN (fi).
Right: ratio ρN (fi) = ε̄N (fi)/εN (fi) of the average error divided by the worst
one.

The worst error εN (fi) and the ratio ρN (fi) are displayed3 in Figure 5. We report in Table 5 a
convergence rate r̄N (fi) of the average error ε̄N (fi), defined by

ε̄2N (fi) =
ε̄N (fi)

2r̄N (fi)
.

The worst errors εN (f1) and εN (f2) rapidly decrease, and εN (f6) is zero, up to rounding
errors. This indicates that the quadrature rule QN efficiently integrates the smooth functions f1,
f2, and the symmetric cap function f6, independently of the grid orientation. For the function
f4, which is continuous and non-differentiable, the worst error εN (f4) decreases at constant rate.
The decrease of the worst error εN (f5) of the “generic” cap function f5, which is discontinuous, is
slower. And for the spike function f3, the worst error εN (f3) slowly decreases, with oscillations.

Roughly speaking, Figure 5 indicates that

ε̄N (fi) ≈ 0.25εN (fi), i 6= 3, ε̄N (f3) ≈ 0.025εN (f3).

Except for f3, the worst error is not very large in comparison with the average error (factor 4).
This indicates that the result is almost insensitive to the grid orientation. For the function f3

with a spike, the situation is different (factor 40); the error is sensitive to the grid orientation.
Concerning the speed of convergence, we note r̄N (f3) ≈ 1 for the spike function, r̄N (f5) ≈ 1.4
for the discontinuous cap function, r̄N (f4) ≈ 2.6 for the continuous one. The average errors for
f1, f2 and f6 rapidly converge, since it was already the case for the worst errors.

6.5. Comparison with other quadrature rules. We compare our quadrature rule QN with
some spherical quadrature rules of the literature, summarized in Table 6.

Rules on the Cubed Sphere: We use two other rules on the Cubed Sphere; CS-BC18
is a correction of some bivariate trapezoidal rule, CS-CP18 is an octahedral rule which

3In order to clarify the figure, we have elimated the following ratios: ρN (f1), N > 3, and ρN (f6). Indeed, these
ratios are “large”, because the associated errors are almost zero.
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Abbr. Description Ref.

CS-BBC21 Interpolation on the Cubed Sphere by spherical harmonics This article (QN )
CS-CP18 Octahedral quadrature on the Cubed Sphere, by least-square [16]
CS-BC18 Corrected bivariate trapezoidal on the Cubed Sphere [7]
Lebedev Gauss quadrature, invariant under the octahedral group [14,15]
t-design Spherical t-design [19,20]

Table 6. Quadrature of the literature used for comparison.

minimizes some least-square error concerning the integration of Legendre spherical har-
monics.

Optimal quadrature rules: We also use “optimal” quadrature rules, whose distribution
of nodes is “optimized”. Firstly, our rule is invariant under the octahedral group G,
so we compare with the Lebedev rule, which is an optimal octahedral rule. Indeed,
the optimal grids/weights of the Lebedev rule maximize the degree of precision, with
the constraint of invariance under G. Secondly, our weights are quasi-uniform, so we
compare with spherical t-designs. This rules have equal weights and degree of precision
t; the associated spherical grids have ∼ t2

2 nodes, which is the optimal order.

The results are given on Figure 6. The worst error after 1000 random orthogonal matrices is
plotted related to the number of grid points using different quadrature rules.

Comparison on the Cubed Sphere: Among the quadrature rules on CSN , the new rule
QN outperforms CS-BC18 for the smooth functions f1 and f2, and for the symmetric
cap function f6. The rules QN and CS-CP18 give similar accuracy for most of the cases,
with the following exceptions. The rule QN integrates f1 more accurately than CS-CP18
before convergence, and QN converges slightly faster than CS-CP18 for f2.

Comparison with optimal rules: For the smooth functions f1 and f2, the rules QN and
t-design have similar accuracy, whereas the Lebedev rule converges slightly faster. For
the function f3 with a spike, the worst errors are almost similar; they decay slowly with
oscillations. For the cap functions f4 and f5, the methods converge slowly with similar
accuracy. For the “symmetric” cap function f6, QN and the Lebedev rule are exact (up
to rounding errors) and give better accuracy than the t-design rule.

Overall, the rule QN on a fixed grid CSN displays remarkable accuracy, compared to “optimal”
quadrature methods, which require “optimal” grids (Lebedev and t-design rules).

6.6. Accuracy of the new quadrature rule. The quadrature rule QN is designed to integrate
exactly any spherical harmonic belonging to the space UN . In addition, it integrates 15/16 of all
Legendre spherical harmonics (see Corollary 10). Here, we numerically display detailed accuracy
properties of the rule QN .

First, for a selected set of tolerances ε = 10−p, we give the degree of precision dN (ε), defined
as the largest integer such that

∀|m| ≤ n ≤ dN (ε),

∣∣∣∣∫
S2
Y m
n dσ −QNY m

n

∣∣∣∣ ≤ ε. (11)

The results are reported in Table 7. It is observed that except for N = 3, 4, 64, the degree
dN (10−14) is 2N + 1 if N is odd, and 2N + 3 if N is even. For the three exceptions, the
degree is found higher than the generic one. We have dN (10−14) = 4N − 1 for N = 3, 4, and
d64(10−14) = 2 · 64 + 11. Furthermore, the Table 7 implicitly displays an accuracy information
obtained for some of the Legendre spherical harmonics that are not exactly integrated. For
example, in the case N = 8, the first error above the threshold 10−14 belongs to the interval
(10−6, 10−4]. This error is obtained for the degree n = 20 (since the rule is exact for odd degrees).
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Figure 6. Worst quadrature error (for 1000 random orthogonal transformations
of the grid), versus the number of grid points.

Second, we focus on the quadrature errors

η(Y m
n ) =

∣∣∣∣∫
S2
Y m
n dσ −QNY m

n

∣∣∣∣ , n ≡ 0 (2), m ≥ 0 and m ≡ 0 (4). (12)

Here, we consider the series of the 1/16 of all the Legendre spherical harmonics which are possibly
non exactly integrated by QN , (see Corollary 10). We have computed the quadrature error for
this series for n ≤ 1024, and for the two grids CSN with N = 8 (386 nodes), and N = 31
(5768 nodes). The computed errors are displayed in Figure 7 using both a histogram form, and
a cumulative distribution function. As observed, some errors are zero (up to rounding errors).
This is consistent with the data in Table 7 (if n ≤ dN (10−14), η(Y m

n ) ≤ 10−14). Note also that
the largest observed errors belong to the interval (1, 10).

Finally, we further develop these observations by comparing the rule QN with the Lebedev
rules. As noted in Remark 11 above, errors with the Lebedev quadrature can occur only with
the same set of Legendre functions (referred to as the “1/16 serie”). Therefore, we numerically
compare the accuracy of the Lebedev rules with the rule QN on this series. Figure 7 reports a



14 JEAN-BAPTISTE BELLET†, MATTHIEU BRACHET‡, AND JEAN-PIERRE CROISILLE†

N N̄ dN (10−14) dN (10−12) dN (10−10) dN (10−8) dN (10−6) dN (10−4)
1 8 3 3 3 3 3 3
2 26 7 7 7 7 7 7
3 56 11 11 11 11 11 11
4 98 15 15 15 15 15 15
5 152 11 11 11 11 11 11
6 218 15 15 15 15 15 17
7 296 15 15 15 15 15 17
8 386 19 19 19 19 19 21
9 488 19 19 19 19 19 23

10 602 23 23 23 23 23 27
11 728 23 23 23 23 23 27
12 866 27 27 27 27 29 33
13 1016 27 27 27 27 29 33
14 1178 31 31 31 31 33 39
15 1352 31 31 31 31 33 41
16 1538 35 35 35 35 39 45
17 1736 35 35 35 35 39 47
18 1946 39 39 39 41 43 51
19 2168 39 39 39 41 45 55
20 2402 43 43 43 45 49 59
21 2648 43 43 43 45 49 65
22 2906 47 47 47 49 53 65
23 3176 47 47 47 51 55 71
24 3458 51 51 51 55 59 75
25 3752 51 51 51 55 61 79
26 4058 55 55 57 59 65 85
27 4376 55 55 57 59 65 89
28 4706 59 59 61 65 69 95
29 5048 59 59 61 65 71 97
30 5402 63 63 65 69 75 101
31 5768 63 63 65 69 77 105
32 6146 67 67 71 73 81 111
64 24578 139 143 147 155 183 255

Table 7. Quadrature rule QN : observed degree of precision dN (ε) for various
tolerances ε. See (11).

comparison between the two Lebedev grids with 434 nodes and 5810 nodes and the cubed sphere
rule QN with 386 nodes (N = 8) and 5768 nodes (N = 31), respectively. It is observed that the
Lebedev rules exactly integrate a larger set of spherical harmonics; this was somehow expected,
since the Lebedev rules are defined to maximize the degree of precision over octahedral grids.
But surprisingly, the distribution of the largest errors of the Lebedev rule is very similar with
the one of the rule QN . In particular, the largest errors of QN , defined on the fixed octahedral
grid CSN , are not above the largest errors of the Lebedev’s optimal grid. We even notice on the
cumulative density function plots that the number of errors below a moderate tolerance ε can be
slightly larger with the rule QN ; this is observed in particular with N = 31 and ε = 10−7. These
observations indicate the interest of the rule QN when compared with an optimal rule.
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7. Conclusion

Quadrature on the sphere is important in many respects. It arises in a variety of contexts
in physics and chemistry: quantum physics, crystallography, gravimetry, astrophysics, kinetic
theory (Boltzmann collision kernel approximations, neutron transport), to quote some of them.
Our interest in this question stemmed from numerical experiments with a Cubed Sphere finite
difference (FD) solver for the spherical shallow water equations, [8,9]. Important mean quantities
must be accurately preserved with time, one of them beeing the mean potential vorticity. Since
a FD solver is not conservative by construction, a conservativity analysis must be a posteriori
performed, and therefore, an accurate quadrature is needed.

The new rule QN has the property to be quasi-uniform with positive weights. The numerical
results can be compared in accuracy with optimal rules such as t-designs and Lebedev rules. This
supports the claim of the “approximation power” of the Cubed Sphere. Among the questions
open, a better convergence analysis must be performed. Proving the positivity of the weights is
also an important goal. This is deferred to a future study. Overall, the symmetry properties of
the Cubed Sphere as a support for quadrature seems a promising topic.
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Figure 7. Comparison of the errors on the 1/16 series of spherical harmonics
(see Corollary 10) between the rule QN and Lebedev’s rules for two pairs of
grids. Left column: CS (386 nodes)/Lebedev (434 nodes). Right column: CS
(5768 nodes)/Lebedev (5810 nodes). The quadrature error η is reported for the
spherical harmonics Y m

n , with n ≡ 0 (2), m ≡ 0 (4), 0 ≤ m ≤ n ≤ 1024. Top:
a histogram with logarithmic rescaling of the errors η (12) is displayed for both
rules. Bottom: the cumulative density function (cdf) in logarithmic scale for both
rules is reported. On these plots, the range of the logarithmic error log(η+10−15)
has been uniformly divided into 128 classes; for any class [c1, c2), the probability
(top line) represents the percentage of errors η such that 10c1 ≤ η+10−15 < 10c2 ,
whereas the cumulative density (bottom line) represents the percentage of errors η
such that η+10−15 < 10c2 . As a conclusion, the Lebedev’s rules exactly integrate
more spherical harmonics, but the distributions of the largest errors are similar;
moreover, for a large grid, the percentage of errors below a moderate threshold
(ε = 10c2) is larger for the rule QN (bottom-right with ε > 10−7).
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Appendix A. Quadrature rules data

The data for the various rules used in this study can be found as follows:
• The new rule associated to the Cubed Sphere nodes is available on the open archiv
https://hal.archives-ouvertes.fr/hal-03223150/file/xyzwCSN.zip
• For the Lebedev rules, we have used the Matlab function getLebedevSphere (by R.M.
Parrish). The code is available on
https://fr.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere
• The t-designs have been found on R.S. Womersley webpage
https://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/sf.html
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