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The Cubed Sphere grid

Figure: The Cubed Sphere.
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Longitude/latitude grid

λ ∈ [0, 2π)

θ ∈ (−π/2, π/2)

Figure: The lon-lat grid
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Other grids

Figure: Left: icosahedral grid. Right: web grid.
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The Cubed Sphere: two series of great circles

C
(1)
i , −N/2 ≤ i ≤ N/2

C
(2

)
j
,
−
N
/2
≤
j
≤
N
/2

• Grid points are located at the intersection of two series of great
circles. • The circles in vertical position are labeled C(1)

i ,
−N/2 ≤ i ≤ N/2. • The circles in horizontal position are labeled
C

(2)
j , −N/2 ≤ j ≤ N/2. • The integer N is a measure of the spatial

resolution.
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The Cubed Sphere grid (CS)

Panel on the Cubed Sphere

Only the two circles in the center intersect orthogonally.

With aperture angles ̂
C

(1)
−N/2, C

(1)
N/2 = π/2 and

̂
C

(2)
−N/2, C

(2)
N/2 = π/2, the grid forms a panel.

The Cubed Sphere grid consists of six panels with number
k = (I), (II), (III), (IV ), (V ) and (V I).

These six panels are labeled: FRONT, EAST, BACK, WEST,
NORTH and SOUTH

Definition of the Cubed Sphere

The Cubed Sphere is the set of points ski,j , −N/2 ≤ i, j ≤ N/2,
(I) ≤ k ≤ (V I).
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The Cubed Sphere grid

Figure: The Cubed Sphere grid with resolution N = 16 (162 cells by panel).
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Coordinate angles on a panel

Angles ξ and η

First equatorial angle ξ with −π/4 ≤ ξ ≤ π/4 (”zonal”),

Second equatorial angle η with −π/4 ≤ η ≤ π/4 (”meridional”).
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Local basis

Local basis

The local basis at x ∈ S2 is (”covariant” basis):

(gξ(x), gη(x)) = (∂ξx, ∂ηx) (1)

The dual basis is (gξ(x), gη(x)):{
gξ = G11gξ +G12gη,

gη = G21gξ +G22gη,
(2)

The metric tensor G is

G ,

[
gξ.gξ gξ.gη
gη.gη gη.gη

]
=

[
G11 G12

G21 G22

]−1

(3)

The coordinate lines ξ = cste and η = cste correspond to great circles.
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Discrete data on the Cubed Sphere

Discrete data and great circles

A grid function on the Cubed Sphere consists of the six sets of data

uki,j , −N/2 ≤ i, j ≤ N/2, k = (I), (II), (III), (IV ), (V ), (V I).

Arrangement of data along great circles

The data on the Cubed Sphere are partially arranged along great
circles. The coordinate lines of each panel are great circles sections.
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Example: two set of great circles associated with the
panels FRONT and BACK

Figure: Set of ”horizontal” circles: iso −η coordinate great circles.

Figure: Set of ”vertical” circles: iso −ξ coordinate great circles.
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Discrete derivative

Compact Hermitian derivative

Hermitian discrete derivative ux,j ' u′(xj) is defined by

1

6
ux,j−1 +

2

3
ux,j +

1

6
ux,j+1 =

uj+1 − uj−1

2h
(4)

Fourth order accuracy

ux,j = u′(xj)−
1

180
∂(5)
x u(xj)h

4 +O(h6) (5)

Main idea
Calculate Hermitian derivatives along coordinate great circles on
the Cubed Sphere.
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Discrete spherical gradient

Continuous spherical gradient

Evaluation of the discrete gradient ∇T (x)u on panels FRONT and
BACK is expressed as

∇Tu(x) =
∂u

∂ξ
(x)|ηg

ξ(x) +
∂u

∂η
(x)|ξg

η(x) (6)

Discrete spherical gradient

A discrete formula analog to (6) is

∇T,hui,j= uξ,i,j︸ ︷︷ ︸
ξ−Hermitian deriv.

gξi,j + uη,i,j︸ ︷︷ ︸
η−Hermitian deriv.

gηi,j (7)
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Data along a great circle

The Hermitian discrete derivative is applied to the data in blue.
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Divergence and Curl on the sphere

Discrete divergence and curl

• ∇T · u =
∂u

∂ξ |η
· gξ +

∂u

∂η |ξ
· gη ≈ ∇T,∆ · u = uξ · gξ + uη · gη

• ∇T × u =
∂u

∂ξ |η
× gξ +

∂u

∂η |ξ
× gη ≈ ∇T,∆ × u = uξ × gξ + uη × gη

where (gξ,gη) is the dual basis at (ξi, ηj) and hξ, hη, uξ and uη are
the Hermitian derivatives at points (ξi, ηj) on each panel (k).
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Discrete differential operators : error estimate

Consider a function x ∈ S2 7→ h(x). The gridfunction h∗ is defined by
h∗(ski,j) = h(ski,j). ∆ξ = ∆η = π/(2N) is the resolution parameter.

Proposition

Let h : S2 7→ R and u : S2 7→ TS2 be regular functions. Then:

Gradient error:

‖(∇Th)∗ −∇T,∆h∗‖∞ ≤ O
(
∆3
)

(8)

Divergence error:

‖(∇T · u)∗ −∇T,∆ · u∗‖∞ ≤ O
(
∆3
)

(9)

Curl error:

‖(∇T × u)∗ −∇T,∆ × u∗‖∞ ≤ O
(
∆3
)

(10)

The operator ”∗” stands for : ”restricted to the Cubed Sphere”.

Effective order of accuracy

Fourth order accuracy is observed in the three cases!
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Example: accuracy of the approximated curl

Approximate curl of a tangential vector field u = u(θ)eλ (zonal
dependance)

u(θ) =

{
80
en

exp
[

1
(θ−θ0)(θ−θ1)

]
if θ0 ≤ θ ≤ θ1

0 else
with en a normalization constant.

Figure: Convergence rate of the Hermitian curl of the zonal velocity u = u(θ)eλ.
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PDE’s on the sphere in climatology

Atmospheric ”horizontal” motion consists of the incompressible
3D Navier-Stokes equations (NS) in a spherical shell.

The ”vertical” motion consists of the thermodynamics (radiation,
clouds, evaporation, etc).

The ”2D” model consists of the shallow water equations in
nonlinear or linearized form. They are called SWE and LSWE.
These models are obtained by averaging the NS equations along
the vertical.

Almost no theoretical results in the nonlinear regime !

Even in the linear regime a lot remains to do !
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Outline

Center scheme in space of order 4 based on great circles on the
Cubed Sphere.

Minimal dissipation added by a filter function (10th order) AND
the time scheme (RK4). Similar to Comp. Aeroacoustics.

Compute numerical solutions after a physical time as long as
possible using an eulerian scheme.

Short time: 1-10 days.
Medium time: 50-100 days.
Long time: 500-1000 days.

Compare the quality of the solutions obtained with high order
conservative methods.

Prove mathematical results: conservation, convergence analysis,
etc.
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Time dependent PDE’s on the sphere

Approximation in space

PDE at the continuous level: (t,x) ∈ R× S2 7→ q(t,x) solution of

∂tq + divT f(t, q) = 0 (11)

is approximated by (method of lines):

Approximation q(t, ski,j) ' Qki,j(t) solution of the ODE

d

dt
Q(t) = F (t, Q(t)) (12)

where F (t, Q)ki,j = −divT,h f(t, Q)ki,j

Approximation in time of (12) is performed separately.
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Time approximation and filtering

d

dt
Q(t) = F (t, Q(t)) (13)

is approximated by the RK4 time scheme. Let F be a spatial filter
function.

Runge-Kutta order 4 + Spatial filtering
1 K1 = F (tn, Qn),
2 K2 = F (tn + ∆t

2 , Q
n + ∆t

2 K1),
3 K3 = F (tn + ∆t

2 , Q
n + ∆t

2 K2),
4 K4 = F (tn + ∆t, Qn + ∆tK3)

5 Q̂n+1 = Qn + ∆t
6 (K1 + 2K2 + 2K3 +K4)

6 Qn+1 = F(Q̂n+1)
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Filtering step

High frequencies filtering (Alpert, Tam, Visbal, Bailly, ...)

The filter F is a discrete linear operator

F(u)i =
J∑
j=0

aj
2
(ui+j + ui−j) (14)

The coefficients aj satisfy:

1 =
J∑
j=0

aj , consistency (15)

0 =

J∑
j=0

aj(−1)j + 1/− 1 mode cancellation (16)

0 =

J∑
j=0

aj
2
j2k for k = 2, 4.., 2(J − 1) accuracy (17)
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Filtering step (cont)

Proposition

There exists a unique filter function F satisfying the 3 conditions
above:
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Filtering step (cont.)

10-th order filtering

a0

a1

a2

a3

a4

a5


=



772/1024

210/1024

−120/1024

45/1024

−10/1024

1/1024



Symmetric filtering step

Symmetric filter in ξ and η:

F =
1

2
(Fξ ◦ Fη + Fη ◦ Fξ)
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Spherical Shallow Water equations

SW equations in non conservative form (vector form of the
momentum equation)

∂h?

∂t
+∇T · (h?v) = 0

∂v

∂t
+∇T

(
1

2
|v|2 + gh

)
+ (f + ζ)n× v = 0

(18)

where

h is the fluid thickness and v the tangential velocity,

h? = h− hs with hs the bottom topography.

n is the normal exterior vector,

ζ = (∇T × v) · n is the vorticity,

f is the Coriolis parameter (depends on the latitude).
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Conservation properties

Time invariant averaged values

Let (h,v) be a solution of the SW equations, then the following
quantities are conserved :

mass :
∫
S2a
h(t,x)dσ(x)

energy :
∫
S2a

(
1

2
g(h2 − h2

s) +
1

2
h|v|2

)
dσ(x)

potential enstrophy :
∫
S2a

(f + ζ)
2

2gh
dσ(x)

Quadrature over the Cubed Sphere

Discrete quadrature formula :

I(f) = a∆ξ∆η

(V I)∑
k=(I)

N/2∑
i,j=−N/2

√
Gki,jf

k
i,j (19)
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Barotropic instability test case

J. Galewsky and al., 2004

Zonal steady state of the SW equations

h̄(θ) = h0 +
1

g

θ

−π/2
au(τ)

[
f +

tan(τ)

a
u(τ)

]
dτ

v(λ, θ) = u(θ)eλ

(20)

with :

Coriolis parameter : f = 2Ω sin θ,

u(θ) =


umax
en

exp

(
1

(θ − θ0)(θ − θ1)

)
if θ0 ≤ θ ≤ θ1

0 else
with en = Cste, umax = 80 m s−1, θ0 = π/7 and θ1 = π/2− θ0.
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Barotropic instability test case (cont.)

Perturbation of the steady state

The initial data is given by :

initial h = perturbation of h̄:

h(λ, θ) = h̄(λ, θ)+ ĥ cos θ exp

[
−
(
λ

α

)2

−
(
θ2 − θ
β

)2
]

, ĥ/h̄ ≈ 1%

with θ2 = π/4, α = 1/3 and β = 1/15.

zonal velocity not perturbed

v(λ, θ) = u(θ)eλ

Interest for the CS
This test is particularly challenging for the Cubed Sphere:

h has large variations along the boundary of panel (V)

the initial perturbation is located at the boundary between panel
(I) and panel (V).
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Barotropic instability test case (cont.)

Vorticity after 6 days with a CS grid 6× 128× 128⇒ gives the
correct number of vortices.
Results similar to high order conservative methods such as FV or
DG.
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Numerical conservation

Conservation of mass and energy, grid: 6× 128× 128.

Mass and energy are conserved up to 10−7 (relative error).

Potential enstrophy is conserved up to 10−3 (relative error).

Jean-Pierre CROISILLE - Univ. Lorraine - Metz, France Univ. Bordeaux - 14th french-romanian conf. math.



Rossby-Haurwitz test case

Williamson and al., 1992

Design of the test case

The Rossby-Haurwitz test case is an exact solution of the barotropic
vorticity equation.

initial velocity is v = u · eλ + v · eθ with:{
u = aω cos θ + aK cosR−1 θ

(
R sin2 θ − cos2 θ

)
cosRλ

v = −aKR cosR−1 θ sin θ sinRλ
(21)

initial height h is

gh = gh0 + a2A(θ) + a2B(θ) cosRλ+ a2C(θ) cos 2Rλ (22)
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Rossby-Haurwitz test case (cont.)

Williamson and al., 1992

Figure: Numerical results of Rossby-Haurwitz wave test case with grid
80× 80× 6 at 7 and 14 days. Contour line are plotted from 8100 m to 10500
m with interval of 100 m.
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Rossby-Haurwitz test case (cont.)

Figure: Conservation of Rossby-Haurwitz wave test case with grid
128× 128× 6.
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Linearized Shallow Water Equations (LSWE) on the
rotating earth

LSWE equations
∂tv(x, t) + g∇T η + fk × v = Sv
∂tη(x, t) +H divT v = Sη
v(x, 0) = v0(x), η(x, 0) = η0(x)

(23)


• g = gravity acceleration,
• H = mean thickness of the atmosphere,
• f = Coriolis force

(24)

The LSWE is the basic model for convection in climatology

This is the reference model for linear waves on the rotating
sphere.

Recent reference: N. Paldor: N. Paldor: Shallow Water Waves
on the Rotating Earth, SpringerBriefs in Earth System Sciences,
2015
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Quasi-analytic traveling waves solutions of LSWE

Problem
Assessing numerical scheme by using realistic traveling wave
solutions. Analytic or quasi-analytic.

LSWE theory for spherical waves

Laplace tidal equations published by Laplace in 1776. Since then a
complete theory for LSWE on the sphere is still not available !
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The barotropic vorticity equation (BVE)

The simplest model for the atmosphere, (incompressible Euler
equation on the sphere.)

First numerically integrated by Charney, Fjørtoft and von
Neumann in 1950 on the ENIAC.

D

Dt
(ζ + f) = 0, ζ = (∇× v).k f = Coriolis force (25)

1930/1940: Rossby-Haurwitz wave analysis based on the
linearized form of BVE using spherical harmonics by Rossby and
Haurwitz.

The Rossby-Haurwitz waves ARE NOT a solution of LSWE.
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Paldor et al. test case for LSWE

LSWE is expressed as

∂tq(t,x) = Aq (26)

”Zonal” traveling wave solution

q(t,x) = q̂(θ) exp(ik(λ− Ct)) (27)

q̂(θ) deduced from ψ(θ) from a second order equation

ψ′′(θ) + Fα,k,C(θ)ψ(θ) = 0 (28)

with α = gH/(2Ωa)2 and with B.C ψ = 0 at θ = ±π/2.
The constant α determines the thickness of the atmosphere
(”thick” or ”thin”).
One obtains sequences of eigensolutions identified as

EIG or WIG mode (eastward or westward inertial-gravity) mode
Rossby mode

They are quasi-analytic solutions to be compared with the
numerical ones.

Jean-Pierre CROISILLE - Univ. Lorraine - Metz, France Univ. Bordeaux - 14th french-romanian conf. math.



Hovmöller diagrams

Figure: Hovmöller diagram for Paldor’s test cases: EIG solution, WIG solution
and Rossby solution in the barotropic case
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Paldor’s test cases, (cont.)

With N = 64, one has the following data:

EIG mode: 1807 iterations, 13.17 jours, error on the velocity C :
0.15%,

WIG mode: 1807 iterations, 13.17 jours, error on the velocity C :
1.99%,

Rossby mode : 165 142 iterations, 1203 jours, error on the
velocity C : 1.77%.
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Computational complexity

Matlab sequential code on a deskwork (Intel(R) Xeon(R) CPU
E5-2620 v2 @ 2.10GHz).

Computational cost of ∇Th ≈ 96N2 for 12N2 unknowns (due to
the tridiagonal matrices).

Typical CPU time : 1.5 hours for 6 days with N = 80 (2140 it.).
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Interest of the present approach

“Intrinsic” calculation
All finite difference approximations are obtained using great circles
curvilinear abscissa.

Classic framework of finite-differences
No pole problem, no “overlapping” grid problems.

Thank to periodicity, easy change to another Hermitian formula
without heavy recoding.

Large backlog of numerical experiments from the Compact
Scheme literature available.

Cartesian Finite Difference more stable than spectral like
collocation (Spherical Harmonics, Spherical Wavelets, Radial
Basis Functions,...)

To improve: avoid redundant calculations, higher order accuracy,
implicit time stepping, fast solvers,...
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Conclusion and future work

Center scheme in space is relevant for spherical flows
considered so far. Upwinding was found unnecessary.

Cases considered so far are smooth, even if they are nonlinear.

Minimal dissipation: explicit RK4 time scheme with filtering.

Results similar to high order conservative schemes in terms of
accuracy.

Mathematical convergence analysis.
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